68

Chapter 8

The Event Calculus

Formal Specification of Real Time
Systems by means of Diagrams and Z schemas

The “Event Calculus” is a diagrammatic notation which provides an easily used means of for-
mally specifying the behaviour of concurrent systems. It can describe synchronous and asynchronous
communications, data flow modelling and function application, and the expression of temporal con-
straints. It has the ability to abbreviate the descriptions of complex state changes, such as data base
updates, by means of Z schemas.

The Calculus models system states with sets of parameterised state machines which can com-
municate via n way synchronisations known as “events”. In comparison with process algebras such as
Csp, Ccos and LoTos, the calculus is relatively easy for a non specialist to use. It is also easier to present
specifications that can be understood by developers who do not have a sophisticated mathematical back-
ground. The calculus provides a good control of the level of abstraction used in a model.

In this chapter we introduce the Event Calculus with a series of examples and give a formal
mathematical interpretation of the diagram notation.

8.1 Introduction

The Event Calculus resembles process algebras such as Ceos (Milner 1989) and Csp (Hoare
1985) in that the mathematical model of communication derives from a simultaneous state change in
more than one state machine. We provide a model theoretic description of how the behaviour of a
composite state machine can be derived from the behaviour of 1ts component state machines. The basic
model is then extended to include asynchronous events, value passing, function application and time.
Finally, we introduce the use of supplementary 7Z schemas to augment the diagram notation and the use
of “Schema Transitions” to describe complex state changes such as data base updates.

An important aim of the calculus is that the use of diagrams should give the user a more intuitive
and direct view of system behaviour than can be achieved by algebraic expressions alone. Unlike less
formal diagram notations, such as DFDs; our diagrams give a complete model of system behaviour and
may be thought of as the user interface to an underlying algebra of machine behaviours. Unlike other
formal models of concurrency which can also provide a diagrammatic representation of simple processes,

OThis is a chapter taken from the Ph.D. thesis “Practical and Theoretical Aspects of Forth Software
Development”. A full copy of the thesis is available from the British library. Both the this chapter and
the thesis are Copyright © Peter Knaggs.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 69

the diagram notation for the Event Calculus is fully equipped to deal with complex examples involving
parameter passing, function application, asynchronous events and data base updates.

The Event Calculus is particularly well suited for use with the FORTH language. Each FORTH
actor (or task) can be represented in the Event Calculus as a state machine.

8.2 State Machines

The Event Calculus is based on state machines which are associated with a set of state changing
“events”. Qur state machines are described in terms of a set of states, a set of events and a next state
function which maps a state event pair to a new state.

Our first example consists of a pair of state machines, V and C'. The next state functions ¢ V'
and ¥ C are as shown in figure 8.1.

getlecu getZecu

collect G
two_ecu

one_ecu

one_ecu
two_ecu

one_ecu

collect collect

Figure 8.1: The state machines V and C

V is a simple futuristic vending machine which can accept one ecu or two ecu coins and can
dispense either a small or big chocolate bar.

states V = {VO, Vl, Vz, Vg}

evenls V = {one_ecu, two_ecu, small, big, collect}

C' is a child who gets a one ecu coin or a two ecu coin and inserts it into the vending machine
to purchase a chocolate bar.

states C = {Cy, C, Cy, C3, C4, Cs, Cs, C7, Cs}

evenls C = {getlecu, gel2ecu, one_ecu, two_ecu, small, big, collect’}

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 70

Some of the events of ', such as one_ecu, are shared with V. When a shared event occurs both
C and V will simultaneously move to a new state. We call such an event “synchronous”. The child puts
the coin in at the same instant as the machine has the coin put in.

We now describe (informally) the Event Calculus rules for determining the behaviour of the
composite machine {V, C'}.

Let us suppose we start in state { Vg, Co}. In state Vo machine V is ready to participate in
events one_ecu and two_ecu. However, these are both events that are in the event set of machine C'.
Events are enabled only when all machines capable of taking part in them are ready to do so. Thus from
our initial state these events are disabled and cannot occur.

In state Cy, machine C' is ready to perform the events getlecu and get2ecu. These events are
unique to machine C', so they are enabled (We could also say they can occur because all machines capable
of taking part in them are ready to do so, the only such machine being).

At each stage, any enabled event can occur. Suppose getlecu occurs. The composite machine
is now in state { Vg, C1}. We denote this state change by writing:

getlecu
{Vo, Co} ———{ Vo, C1}

Now both C and V are ready to take part in the event one_ecu. This is now the only event
enabled. In fact the remainder of the behaviour of {V, C} is deterministic. All possible composite
behaviours of { V', C'} (there are only two) are shown in figure 8.2.

{ Vo, Go }
getlecu getZecu
{ Vo, } { Vo, G}
one_ecu two_ecu

{ Vi, G5} { Vo, G}

small big

{ Vs, G5} { Vs, Cs }
collect collect

{ Vo, C7 } { Vo, Cs }

Figure 8.2: Graph of behaviours for the model of figure 8.1

We follow a naming convention that uses machine names derived from the common root of the
state names for that machine. Thus the state names Vi, Vi, V, and V3 have a common root V which
is the name of the corresponding machine.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 71

8.3 The Formal Model

We now provide formal rules for deriving the behaviour of a set of machines from the next state
functions of each individual machine.
Basic types for our discussion are:

[MACHINE,STATE, EVENT]

MACHINE is the set of state machines (or more precisely state machine identifiers).
STATE 1s the set of possible machine states.
EVENT is the set of events.

We define a “next state” function:
¢ : MACHINE — ((STATE x EVENT) -+~ STATE)

The idea here is that ¢ is a function from machines to next state functions. Thus ¥ym will return
the next state function for machine m.

We define a function to identify the set of states associated with a particular machine and to
specify that each state i1s associated with only one machine.

states : MACHINE — PSTATE

Vm: MACHINE e
states m = ran(¢m) U dom (dom (¢m))
Vmi,my: MACHINE e

my # mp = states my N states mp = &
We define a function to return the unique machine associated with a given state.
machine == {s : STATE, m : MACHINE | s € state m e s — m}

The basis of the Event Calculus is the definition of a function y that describes the behaviour of
a set of possibly communicating machines in terms of the next state functions of each individual machine.
First, however, we define some functions and sets which we will use to make the definition of y more
readable.

First, we define a function that tells us whether an event can occur when a machine is in a given
state.

‘ ready : STATE x FVENT — B

Ve: EVENT; s: STATF o
ready(s,e) = (s, ¢e) € dom (¢ (machine s))

Considering our vending machine V as an example:

ready(Vp, one_ecu) = true as event ome_ecu can occur in state Vp.
ready(Vo, big) = false as event big cannot occur in state Vj.

The repertoire of a machine 1s the set of all events in which it can participate. The set of events

associated with the next state function of a machine is a subset of its repertoire!.

1This distinction is useful because we may wish to provide a next state function which shows only part of the behaviour
of a machine, a subset of events from a machines repertoire.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 72

‘ events, repertoire : MACHINE — PEVENT

‘ Vm: MACHINE e events m = ran (dom (¥ym)) A events C repertoire

When considering a set of state machines we think of an event as causing a composite state
change which may affect more than one machine. Valid composite states are ones in which each constituent
state represents the state of a different machine. Formally, we define the set of valid state sets as follows:

validstateset =
{sset : PSTATE |V 51,52 : sset ®

s1 # 82 = machine s1 # machine s2}

In the context of a composite state set, an event may only occur if every machine which has that
event in its repertoire 1s ready for it. We define a boolean function that will tell us whether a particular
event is enabled for a given composite state.

enabled : (validstateset x EVENT) — B

V sset : validstateset; e : FVENT o
enabled (sset, e) =
(Vs : sset ® € € repertoire(machine s) = ready(s, e))
A (T s : sset o ready(s, €))

We now define the function y which derives the behaviour of a set of state machines from the
individual behaviours of each machine plus the enabling rule for composite events. We will define x to
take a set of machines as its argument and to return a next state function for that set of machines. y is
described by giving its domain and by describing its application to an arbitrary element of its domain.

X : PMACHINE — ((validstateset x EVENT) — validstateset)

V sset : validstateset; e : FVENT; mset : PMACHINE o
dom(xymset) = {e : EVENT; sset: validstateset |
machine (| sset |) = mset A enabled(sset,e) o (sset,e)}

N
(sset, e) € dom(ymset) =
(xmset)(sset,e) = {s' : STATE |
s’ € sset A e & events(machine s')
\Y

Js: sset @ e € events(machine s) A s’ = (Y(machine s))(s,e)}

8.4 An Algebra of machine behaviours

The function x maps from a set of machines to a function which describes the possible composite
behaviours of those machines. We now introduce a binary operation to compose such behaviours. We
write this operation as || (pronounced “par”).

‘ _||=: range x x range x — x

V msety, msety : P MACHINES o

xmsety||[xmset, = y(mset; U msetz)

is now a homomorphism from the algebra of set unions
[P MACHINES ,U] to the algebra of machine behaviours [range x,||]]. It follows that [range x,||] is a
commutative monoid (ie, || is commutative, associative and has a unit element).

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 73

8.5 Labelled Transitions

For arbitrary s,¢ : STATE; e : EVENT we introduce the notation:

e
s—1

to indicate that the machine associated with state s goes from state s to state ¢ when event e occurs.
We call this a “labelled transition”. Formally the notation is introduced as follows.

‘ _&—_: STATE x EVENT x STATE — B

‘ s<3;—> t & (Y(machine s))(s,e) =1

8.6 Simple Examples

In this section we provide some simple examples of Event Calculus models and at the same time
introduce some additional notations for use in Event Calculus diagrams.

8.6.1 The specification of mutual exclusion (without fairness)

Consider two processes A and B, and a semaphore §.

states A = {Ag, A1}
states B = {Bo, By}
states S = {Sp, 51}

A; and B are the critical regions of processes A and B.

S will be in state S; when one of the processes is inside its critical region and in state Sy
otherwise.

Starting from initial composite state { Ao, By, So}, any composite state which includes {Ay, By}
will be impossible to reach.

The individual machines are as shown in figure 8.3.

aget bget
aget arel
vV vV
bget brel
arel brel

Figure 8.3: Mutual exclusion without fairness

This diagram introduces a convention by which two alternative transitions with the same start
and end states are shown by a single line with an appropriate label. For example the arc from Sy to 51
which is labelled aget V bget.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 74

arel { Ao, So, Bo } brel

{A1,%,By } { Ay, 5,81 }

Figure 8.4: Graph of behaviours for the model given in figure 8.3

Suppose we start the model in composite state {Ag, By, So}. The possible transitions for the
composite state are as shown in figure 8.4.

When two (or more) alternative transitions are available (in this case aget and bget) it is upto
the designer to fire and trace the events as appropriate (see the trace on page 77 of section 8.6.4 for an
example of tracing events).

If we were to give machine A precedence over machine B, we would observe the unfair nature
of this model, in that machine B will never be capable of reaching state B;. The event bget is only valid
when we have the composite state {Ag, By, So}, however the event aget is also valid in this state. As we
are favouring machine A over machine B, we now fire the aget event, thus preventing the bget event from
ever being fired (a condition referred to as indefinite postponement).

8.6.2 Asynchronous Events

Machine A broadcasts job requests to machines B and C'. The broadcast event, which we denote
by job, is to be asynchronous. That is, B and C do not have to be ready for the broadcast for it to occur.
We distinguish such asynchronous events in our diagram notation by underlining them in the graph of
the state machine which originates them.

In this simple model, A knows that it can have two jobs outstanding at any one time and will
not attempt to broadcast a further job until one of these is done (see figure 8.5).

Now consider the following composite state transitions from an initial composite state { Ag, Bo, Co }

job

{Ao, By, Co} ——{A1, B1, (1} (8.1)
back

{A1, By, i} ———{ Az, Bo, Go} (8.2)
job

{As, B2, Co} ——{ 43, B2, (1} (8.3)
cack

{As, B2, C1} ———{ A4, Bo, (5} (8.4)

According to our laws for composite transitions, the composite transitions 8.3 and 8.4 cannot
occur, as they are not synchronised. To allow asynchronous events to be declared we must add some
additional structure to our calculus.

One possibility would be to distinguish two types of event (synchronous and asynchronous) and
formulate rules for the underlying calculus accordingly. Another approach, which we follow here, is to
describe asynchronous events in terms of the existing calculus. In terms of the underlying formalism, the
effect of declaring job as an asynchronous event originated by machine A is to add some additional null
transitions to B and C' to allow job to occur in all states of B and C.

Let the original next state function as given by the above graphs be ¥5. We construct 7 which

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 75

o
=
<~

bd
ﬁne bdone cack cdone back
cdone back
\ ; job
\\\‘- cack job
job back cack
bdone
vV
cdone
back
vV
cack

o

Figure 8.5: An example using asynchronous broadcasts

allows job to be asynchronously originated by A:

Yim =
if m = Athen¢o A

else | {(s,job) — s} ® 1o

sestates m

The idea is to add labelled transitions of the form s —— s to the next state functions of B and
C for all states s which are not otherwise ready to participate in the event job.

The event back 1s asynchronously originated by B and event cack is asynchronously originated
by C. We can construct appropriate next state functions to express this as follows.

From 1 we can construct s which allows back to be asynchronously originated by B and from
1o construct 3 which allows cack to be asynchronously originated by C.

In general, we describe a constructor function async which takes a next state function ¢, a
machine m*, an event e and returns a new next state function async(¢, m*, ¢) which has the additional
labelled transitions required to allow e to be asynchronously originated by m*.

SIMPLE_NEXT_STATE_FUNCTION ==
MACHINE — (STATE x EVENT) + STATE

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 76

async : SIMPLE_NEXT_STATE_FUNCTION x MACHINE x EVENT
-+ SIMPLE_NEXT_STATE_FUNCTION

Vi : SIMPLE_NEXT_STATE_FUNCTION;
m, m* : MACHINE;
e: events m* e

e € events m A

async(Y, m*, e)m =

if m = m”* thenym

else Us:states m{(s’ 6) = S} @ ypm
\Y%
e & events m A

async(Y, m*, e)m = m

8.6.3 Value passing

Our calculus 1s based on a primitive notion of synchronised events which do not, of themselves,
admit any notion of direction in communication. However, we can build such a notion and use it to
express ideas such as value passing and function application. The basic idea is taken from the value
passing calculus of Ccs.

Consider the state machines shown in figure 8.6, where A may start in initial state A0y or A0y,
and B starts in initial state BO.

sendy send;
sendy send;

Figure 8.6: Primitive value passing

Depending on the initial state of A, the possible events are sendy or send; which lead to a final
state for B of Bly or B1; respectively.

We can think of events sendy and send; as conveying state information from machine A to
machine B. This idea is the basis of the value passing calculus.

Given the following schema text:

X PN

z: X

A0, B1: X =+ STATE
send : X == EVENT

X ={0,1}

A0 = {0 +— A0q,1+— A0}
B1={0+~ Blo,1+— Bli}
send = {0 — sendy, 1 — send;}

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 77

We will be able to show the simple example given in figure 8.6 as in figure 8.7. In the above schema, A0
and B1 are declared as (partial) injections because each element in their domain must map to a different
state. Similarly send is declared as a (partial) injection because each element in its domain must map to
a different event. Such partial injections identify, by their range, a family of states or events, and we will
refer to, for example, “the family of states A0” or “the family of states A0(z)” (where z is an arbitrary
member of the domain of A0). In future, we will not name individual states or events from such families
but will refer to them by means of the functions that map onto them (eg, we refer to A0(0) rather than
to an actual state name such as AQg).

send(z) send(z)

Figure 8.7: Parameterised value passing

8.6.4 Mutual Exclusion with fairness

Processes A and B submit requests to enter their critical regions by adding an identity token to
a two place queue modelled by QA and @B. The requests are granted when the tokens are removed from
the other end of the queue. Entry to the critical region is governed by a semaphore S. When a process
is in its critical region the state of 5 records this and also records the identity of the process.

The event calculus diagram for the model is given in figure 8.8. Some event identifiers (req(p))
represent a family of events and some state identifiers (QA(p)) represent a family of states. Since the
domains of these injections contain two members, these families each contain two members as well. The
diagram includes basic declarations of the functions req, @A etc. In an actual formal specification these
declarations would be in schema form with additional predicates defining, for example, the exact domains
of such functions. In this chapter such details have been omitted.

We could write out a trace of events from a the model as follows:

Event State
{Ao, Bo, S0, QAE, QBE}

req(A) {Al, Bo, So, QA(A), QBE}
pass(A) {A1, Bo, So, QAE, QB(A)}
req(B) {Ai1, B1, S0, QA(B), QB(A)}
grant(A) {Aq, By, 51(A), QA(B), QBE}
pass(B) {Asz, B, 51(4), QAE, QB(B)}
rel(A) {Ao,Bl,SQ,QAE,QB(B)}
req(A) {A1, B1, So, QA(A), QB(B)}
grant(B) {Ay, B2, S51(B), QA(A), QBE}

This model 1s considered “fair” where the model show in figure 8.3 is “without fairness”. If
we were to take the same disposition as we do in section 8.6.1, ie, if we were to prefer machine A over

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 78

rel(A) rel(p)
rel(B)

req(A) req(B)
e —"

grant(A) grant(B)
e @ pose()

Teq (p @
Declarations:

S1,QA, QB : MACHINE — STATE
req, grant, rel, pass : MACHINE —~ EVENT

Figure 8.8: Mutual exclusion with fairness

machine B, we would have different results. When machine A enters into state Ay, we are in a position
of being able to fire the req(B) event (as shown in the above trace). Thus machine B is now able to enter
into state By (after machine A releases the semaphore with a rel(A) event, as shown in the above trace).
Machine B is now sure to get a “turn” in its critical region before machine A gets its next trun.

8.7 A GCD algorithm, modelling parameter passing and pro-
cedure call

The greatest common divisor function may be defined recursively as follows:

‘ ged :Nx N —N

Vz,y:Ne
ged(z,0) =
ged(z,y) = ged(y, z mod y)

Figure 8.9 provides a composite state machine for calculating a greatest common divisor. Ma-
chine A models a “main program” and machine B models a procedure for calculating z mod y.
To see how function application is being modelled, consider the family of transitions:

cale(w
Bi(u, v) # Ba(w) (w = umodv)

Fach different (u,v) pair is associated with a different state in the family of states By(u,v).
With each of these states we associate an event cale(w) where w = u mod v. For each w the occurrence
of event cale(w) will take machine B into state Ba(w).

In drawing machine A we have included an unnamed transition from Ag(y, z) to Ag(z, y). We
think of this as an instantaneous unsynchronised transition in which nothing changes except the parameter

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 79

eturn(w)

pass(z,y),

y#0

pass(u, v),

v#0

return(z) w— Zarlrj(()z)v’

Declarations:
Ag,B1 : N XN+ STATE
Aq1,A2, By : N STATE
done, pass : N X N EVENT
cale, return : N = EVENT

Figure 8.9: GCD algorithm, with subroutine call

names. The old value of y becomes the new value of z, and the old value of z becomes the new value of
Y.

8.8 Variables and Scopes

Consider machine A as given in figure 8.9. We appear to be able to follow the state history of
variables z and y as the “program” progresses. Although this intuition is correct, is should be underpinned
with an appreciation of the underlying formalism. Formally the diagram for machine A declares the
following families of labelled transitions.

done(z,0)
Ag(z,y) ——— Ay () (8.5)
Aoz, y) MAz(y) (8.6)
return(z
As(y) —()>A0(?/, z) (8.7)

Consider transitions 8.6 and 8.7 of these. The identifiers z and y used in 8.6 are bound variables
local to this family of transitions. The y in 8.7 is a separate bound variable associated with a different
expression. As with all bound variables, the choice of identifier names is arbitrary and formally we could
replace the y in 8.7 with any identifier name except # (which is already spoken for within the same scope).

However, the diagram notation we use limits our arbitrary choice of identifier name in a way
that supports the intuitive understanding we have of persisting identifier values. According to this
understanding, the y in 8.6 can be thought of as the same y as in 8.7 since in any trace they will take
the same value when an event from 8.6 is followed by an event from 8.7.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 80

8.9 Time

We measure time in the Event Calculus in terms of clock ticks. A clock tick is a kind of
universal cosmic heartbeat, which differs from an event both in its universality and in being free of any
synchronisation requirements. States may be associated with a clock function, which records the number
of ticks that have occurred since that state came into existence.

We will place timing constraints on states by means of two partial functions which give the
minimum and maximum times required for given events to occur after entering a given state. These will
be partial functions because not all states and events will have timing constraints.

We also introduce the set fimed which is the set of all time constrained STATE x EVENT pairs
and the set timed_states, which is the set of states which have any time constrained events.

manreq, mazreq : STATE x EVENT — N
timed : STATE x EVENT
timed_states : P STATE

timed = dom minreq = dom mazreq

A

timed_states = {s : STATE |3e: EVENT o (s,¢) € timed}
A

Vs:STATE; e: EVENT o ((s,¢) € timed = minreq s < mazreq s)
A

e
Vs:STATE; e: EVENT o (s,¢€) € timed = — (s & s)

In the next section we will formally introduce a clock function as part of the system state.
States which are subject to timing constraint have an associated clock which records how long they have
been in existence, any new time constrained state that results from the event has its clock initialised to
zero. Note that the final predicate of the above schema is to disallow null transitions from being time
constrained. This is to avoid having to decide whether a null transition should reset a state clock.

Since timing constraints place additional restrictions on whether events can occur, we will hence-
forth distinguish “enabled events” (those capable of occurring if timing restraints are not considered) from
“firable events” (those capable of occurring given that timing constraints are to be taken into considera-
tion). All firable events are necessarily enabled, but not all enabled events need be firable.

In defining what we mean by a firable event we make use of the functions minreq and mazreq
as follows. A time constrained state s must exist for at least minreq(s, e) ticks before event e can occur.
After s has persisted for minreq(s, ¢) ticks the event e may occur if it is firable, but another clock tick
(or another enabled event) may occur instead. After s has persisted for mazreq(s, e) ticks or longer, the
event e will occur before the next clock tick if it can. However, another tick may occur if e is not enabled.
Even if e is enabled it may not occur as there may be other firable events which may occur instead.

Figure 8.10 shows a simple mutual exclusion model with time constraints on the states of
machines A and B.

Figure 8.11 shows a partial graph of the possible behaviours of the composite machine shown
in figure 8.10. In this graph we use the notation (s, n) to show that the timed state s has persisted for
n clock ticks. Thus (Ag, 2) indicates that state Ag has persisted for 2 clock ticks.

Initially, although the events get(A) and get(B) are enabled, they are not firable because of
timing constraints. After the first clock tick the event get(B) becomes firable. We now have a choice of
possible behaviours consisting of another clock tick or the event get(B).

The trace consisting of “fick, tick”, brings us to a composite state where By’s clock has reached
mazreq(By, get(B)). Some event must now occur before the next clock tick. Two events are firable,
get(A) and get(B). If get(B) now occurs we enter the composite state:

{(AO’ 2)’ Sl(B)’ (Bl’ 0)}

State B; is a new member of the compound state and has its clock initialised to zero.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 81

rel(A) rel(p) rel(B)

get(A) get(p) get(B)

Declarations:
get, rel : MACHINE ~ EVENT
S1: MACHINE — STATE

Timing Constraints:
minreq = {((A07 get(A)), 2)7 ((Ah TEI(A))vo)v ((BngEt(B))v 1)7 ((Bh TEI(B))v 1)}
mazreg = {((Ao, get(A4)),3), ((41,rel(A4)),1), ((Bo, get(B)),2), ((B1, rel(B)), 1)}

Figure 8.10: Timing constraints example

If, on the other hand, get(A) occurs we enter the composite state:

{(Al’ 0)’ Sl(A)’ (BO’ 2)}

Now although By’s clock has reached mazreq(By, get(B)) the event get(B) is not enabled. At
this point a tick can occur, or the event rel(A) can occur.

The form of the timing constraints was chosen to allow the modelling of interrupts, time outs
and to allow maximum and minimum times for complex behaviours to be calculated. We base these
calculations on the maximum and minimum times required for the possible event sequences that make
up the behaviour.

Consider the event sequence:

get(A), rel(A), get(B), rel(B)

We can deduce the minimum time this sequence can take by generating a trace which includes these
events and which will always prefer an event to a clock tick:

tick, tick, get(A), rel(A), get(B), tick, rel(B)
and we can deduce the maximum time by generating a trace which always prefers a tick to an event:
tick, tick, get(A), tick, rel(A), get(B), tick, rel(B)

A formal specification of the timing rules for the system requires a notion of current system
state, which 1s given in the following section.

8.10 The Dynamic model

Until now our formalisation of the Event Calculus has used a static model, in the sense that
our next state functions have held information from which all possible behaviours of an Event Calculus

model could be deduced.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 82
{ (AOa O)a SOa (BOa 0) }
tick

{ (AO’ 1)’ S0, (BO’ 1) }

tick et(B)
{ (AO’Q)’SO’(BO’Q) } { (Ao’l)’sl(B)’(Bl’O) }
get(A et(B)
{ (Al’o)’sl(A)’(BO’Q) } { (AO’Q)’Sl(B)’(Bl’O) }

tick

{ (Al’ 1)’ Sl(A)’ (BO’ 3) }

Figure 8.11: Partial graph of behaviours for the machine of figure 8.10

We now supplement this static description with a dynamic model which has a notion of the
current system state. As part of this model we introduce schemas to describe how the current state is
updated by the occurrence of an event or a clock tick.

The “data base schema” for the dynamic model records the composite current state and the
clock value of each time constrained state within this composite state.

__ MachineState
machines : PMACHINE

current_state : validstateset

clock : (timed_states N current_state) -~ N
firable : EVENT — &

machine (| current_state |) = machines
Ve: EVENT o
firable(e) = enabled(current_state, €)
A
V s : current_state o
(s, e) € timed = clock s > minreq(s, €)

In this schema we declare the set of machines to be modelled, a set of states which gives the
current state of each of these machines and a clock function to give the clock value associated with each
time constrained state. We also declare a boolean function which tells us whether a given event may
occur (is firable) in the given system state. An event may fire if it is enabled and if all time constrained
states that will change as a result of the event have clocks that are past their minimum tick values.

We next describe the changes caused by firing an event.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 83

___ FireEvent
A MachineState
e?: FVENT

result! : {“ok”, “cannot fire”}

firable e?
A current_state’ = (xmachines)(current_state, e?)
A clock’ = ((current_state) < clock)U
{5 : timed_states | s € current_state’ \ current_state ® s — 0}
A result! = “ok”

\Y%
= firable e?
A current_state’ = current_state
A clock’ = clock
A result! = “cannot fire”

If an event which can fire is input, the new composite state is found by applying the composite
next state function y. Any new time constrained state that results from the event has its clock initialised
to zero and the message “ok” is output.

If an event is input which cannot fire the system state does not change and the message “cannot
fire” is output.

The final fundamental aspect of our dynamic model is the clock tick. This increments the clock
value associated with each time constrained state in the current state space. However, there are some
circumstances in which a tick cannot occur. Suppose we have one or more state event pairs (s, e) such
that e is a firable event and elock s > mazreq(s, e). Then an event must occur before the next clock tick.

__Tick
A MachineState

result! : {“ok”, “an event must occur before the next tick”}

current_state’ = current_state
A (= Je: EVENT o (firable e A
s : dom clock e clock s > mazreq(s,e)) A
clock' = {s: STATE,n :N| s+ n € clock e s — n + 1}
A result! = “ok”)

(3e: EVENT e firable e A
s : dom clock e clock s > mazreq(s, €)
A clock’ = clock
A result! = “an event must occur before the next tick”)

8.11 Combining the Event Calculus with Z schema calculus

Data base operations are typically described in Z by first giving a data base schema:
So =[Do| Po]
then defining operations on this data base with schemas having a general form:
St = [ASy; Dy | Py

The declaration Dy will give the data structures of the data base. The predicate Py will describe
data base invariants. Dy will declare Input/Output identifiers associated with the update. Py will give
any restrictions and preconditions on the form of these identifiers and will also describe how the new
system state Dj is related to the previous system state Dy.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 84

Suppose that in an event calculus model the state of this data base is maintained by a machine
M. We will provide an interpretation for a “Schema Transition” of the form:

5 /
Mo(S0) —— M1(.57)

such that the Schema Transition describes, in terms of the event calculus, the data base update described
by the schema S; in Z.

In formulating this interpretation we face certain difficulties. Firstly, in the Event Calculus,
parameterised events accept tuples as arguments and identify arguments by their position within the
tuple. In Z schemas, on the other hand, declarations do not have any particular order and arguments are
identified by name. To handle this problem, we extend Z with an alphabetic ordering symbol « so that
if D is a declaration, e D will be the same declaration with its components written in alphabetic order
by identifier name. Thus if X and Y are basic types and:

Disz,z: X;y:Y

then
aDiiszr:X;y:Y; 2:X

In addition, we use @D to represent the type obtained from the declaration D by taking the
cartesian product of the types of its identifiers in the order in which they are written, following Spivey
(1989) we use 0D to represent the characteristic tuple formed by writing out the identifiers of D. For
example

O(aD) is X x Y xX

and

O(aD) is (z,y,2)

These notations will allow us to construct certain tuples required in our event calculus model.
There is also a problem with respect to identifier scope. In a parameterised labelled transition,
identifiers are bound variables the scope of which is the labelled transition together with any qualifying
predicate. Thus
step(y)
o) ———A1(2), (y<zAhz=z-—y)

could equally well be written as:

o(a)MAl(c), (b<aMhc=a—-10)

In a schema, on the other hand, any identifiers declared in the schema have a scope which lasts
till the end of the schema but may subsequently be reintroduced into the formal discussion by quoting the
schema name. To overcome this discrepancy we use universal schema quantification. If D is a declaration
restricted by a property P and if S is a schema, the declaration part of which includes all the identifiers
of D such that S can be expressed in the form:

S=[D; Do | Ps]
then
VD|PeS

represents the schema

[Ds | (VD | PePs)]

In our usage of this notation, D and P will be the declarations and predicate of the schema
describing the data base update. Dy and Ps are the additional declarations and predicates required to
describe the labelled transition which will perform the data base update in the event calculus model.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 85

We need some final conventions to generate the declarations of the parameterised states and the
parameterised event needed in the event calculus model. We derive their names from those used in the
schema transition

5 /
Mo(S0) —— M1(5)

We take My and M; as the names of our parameterised state functions. We obtain the pa-
rameterised event function name by converting the first character of the data base update schema 57 to
lower case. We represent this name informally as s;. This usage 1s informal because it does not show the
derivation of the name s; from the name S;. For example, if the name of the data base update schema
18 Book, the corresponding parameterised event name is book.

We are now ready to give the event calculus interpretation of the schema transition:

S1
Mo (So) — Mi(S5)
where Sy is a data base description schema
So=[Do| Po]

and 57, which describes a data base update operation, has the form:
S1 = [ASy, Dy | Py]
Our interpretation of this text at the event calculus level will be:
¥ Do; D§; Dy e S
where

S
51;
M MACHINE
Mo, My : Oa Dy + states M
s1:©@aD; +~ EVENT

81 (661/D1)
Mo (8a Do) wsessse— Mi(8a D))

8.12 A Distributed seat booking system

As an example of the techniques described above, we specify a simple seat booking system in
which bookings can be made from a number of different nodes. We use Z schemas to describe the data
base and the update and enquiry operations to be performed upon it. We use an Event Calculus diagram
to describe the manner in which each node is able to gain access to the data base. Together with the
rules of interpretation given above, these two parts of the system description generate a formal model, in
7, of the next state functions for the system’s component state machines.

We introduce two basic types, the set of all seats and the set of names for people who may book
the seats.

[SEAT, NAME)]

The state of the data base i1s described in the following schema using a function from seats to
names. Seats which are not in the domain of this function are still free. There is an implicit invariant
which disallows double booking of a seat. This invariant arises from the declaration of the relationship
between seats and names as a partial function.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 86

__Booking
booked : SEAT - NAME
free : PSEAT

free = SEAT \ dom booked

We specify an enquiry operation which will return the set of free seats.

__ Enquire
=ZBooking
free! : PSEAT

free! = free

We specify an operation to book a seat. The operation takes as inputs a seat and a name. It
has the precondition that the given seat should not be already booked and, if this is satisfied, it adds
the new booking to the data base. There will be no need to specify what happens if the seat is already
booked, as the event calculus part of the specification will render this event impossible by specifying a
data validation check.

___Book
A Booking
seat? : SEAT
name? : NAME

seat? € free
booked' = booked U {seat? — name?}

We now associate these schema with an Event Calculus diagram that models a system in which
multiple nodes are able to share access to the data base. Figure 8.12 shows an Event Calculus diagram
which, together with the seat booking specification, provides the formal specification for the system.

The seat bookings data base is maintained by machine A. There are two possible operations
which can be performed on the data base, a seat booking and an enquiry. These are denoted in the Event
Calculus diagram by writing:

Book vV Enguire

This declares the two schema transitions:

Book
Ao(Booking) ———— Ag(Booking”)

and

Enquire
Ao(Booking) —————— Ao(Booking")

There is a possible ambiguity of notation here since the expression
Book vV Enguire

could also be taken to be a single schema formed by the “schema or” of Book and Enguire. To avoid
this, we do not allow schema expressions other than schema names to be written on an event calculus
diagram.

The data base update that occurs when a seat is booked is described by the schema transition:

Book
Ao(Booking) ———— Ag(Booking”)

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 87

The meaning we give to this schema transition can be expressed as:
VDelS

Where D is the declaration part of the Book schema and S is the schema:

_S
Book
A: MACHINE

Ag : (SEAT + NAME) x PSEAT —+ states A
book : NAME x SEAT + EVENT

book(name?, seat?)

Ao (booked, free) Ao(booked', free")

Machines B, C' and D are three nodes which originate booking transactions. B performs its
bookings when in state By, C in state) and so on. Since access to states By, €7 and D; is mutually
exclusive, the details of the booking operation are shown in a single machine X which runs whenever B
is in state By or C is in state €7 or D is in state D;. Our intention is for X to be thought of as the
common logic shared by all booking nodes, not as a separate machine invoked by a booking node when
it wishes to perform a transaction.

SEM 1s provided to control the mutually exclusive access to machine X | while T functions as a
watchdog timer which will cause the booking operation to be forcibly aborted if it cannot be completed
in a set time. This is achieved by placing a time constraint on the {imeout event associated with state
T1 and on the timeout event associated with various states of machine X. In our specification, 1t is
actually possible for machine X to continue with its seat booking operations when 7 is ready to timeout.
However, the booking operations are not allowed to take any observable time (they must all be completed
before the next clock tick).

8.13 References

Hoare, C. A. R. (1985). Communicating Sequential Processes. Computer Science. London: Prentice
Hall International.

Milner, R. (1989). Communication and Concurrency. Computer Science. London: Prentice Hall
International.

Spivey, J. M. (1989). The Z Notation: A Reference Manual. Computer Science. London: Prentice Hall
International.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus

Ag(Booking) SEMg rel(p)
rel(p
Book get(p)
v get(p)
Enquire
Ag(Booking!) SEM(p)
timeout
rel(B) \
rel(C) enquire(free)
gel(B
(B) timeout
get(C) iny(seat)
Xy(free, seat)
reset . ()
4 ms(name),
et v rel(D) timeout seat € free
timeout
Xs(name, seat)
timeout book(name, seat)
get(D)
reset
x //
Declarations: Time Constraints:

Ag : (SEAT - NAME) x PSEAT —~ states A
Xy : PSEAT x SEAT ~~ states X

X5 : NAME x SEAT = states X minreq(T, timeout) = 10

X3 : PSEAT = states X mazreq(Th, timeout) = 10

S1 : MACHINE = states S mazreq (X, timeout) = 0

enquire : PSEAT -~ EVENT Vs :range X3 o mazreq(s, ttmeout) = 0
book : NAME x SEAT =~ EVENT Vs :range X4 o mazreq(s, ttmeout) = 0
get, rel : MACHINE = EVENT Vs :range X5 o mazreq(s, ttmeout) = 0

ny : SEAT - EVENT
ny : NAME —~ EVENT

Figure 8.12: Seat booking, with mutual exclusion & time out

