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Chapter 6

The Cell Type

It is generally considered that the lack of typing in Forth is useful. This can be seen by the
de�nition of the stack to hold values of type \cell". The de�nition of the type cell is su�ciently vague to
allow any data type. However, this can also be misleading and confusing. Here we present a theory that
allows us not only to type the arguments of a function, but additionally to check that the arguments are
correct for any given function.

6.1 Introduction

The Ans Asc X3/X3J14 Technical Committee de�nes a cell as:

The primary unit of information in the architecture of a Forth system. Data stack elements, return

stack elements, addresses, and single-cell numbers are one cell wide. Cell size is implementation-

de�ned, speci�ed in integer address units and the corresponding number of bits. The size of a cell is

an integral multiple of the size of a character.

Let us look at the following Forth code:

X @ EXECUTE

where the variable X is holding an integer. The word @ will fetch a value of storage class cell and place it
on the stack. The word EXECUTE will then take the cell storage class and execute the related de�nition.

There are two types used in this example, \integer" and \execution-token". Both types belong
to the storage unit class cell . In this example, we have the word EXECUTE expecting a value of type
execution-token when there is a value of type integer on the stack. This is obviously a type clash. Due
to the de�nition of a cell, we have no choice but to let this error stand. This is not a new problem, it has
existed from the �rst implementations of Forth.

6.2 Stack Types

One way to solve this problem is to implement some form of typing mechanism. Implementing
a run time type checking mechanism would be too cumbersome to be of use. It would also restrict the
programmer from performing certain \tricks" that require a change of type part way though a de�nition.

In this chapter, we propose a system that can be used to check the type requirements of a
sequence of words at compile time. This has the advantage of not being operational at run time. It also

0This is a chapter taken from the Ph.D. thesis \Practical and Theoretical Aspects of Forth Software

Development". A full copy of the thesis is available from the British library. Both the this chapter and

the thesis are Copyright c
 Peter Knaggs.
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has the advantage of not restricting the programmer from changing the type of a stack argument mid
word.

This system can be used to check that any given program meets its stack requirements. This
is not the same as saying that the program is complete or correct in operation. That is to say that
a program does not invalidate the stack, but may be logically incorrect. This is the same as a Pascal
program compiling, but not executing correctly. Such a program is known as having a \logic error" as
opposed to a \syntax error" or a \type mismatch".

6.3 Notation

In order to discuss these ideas in a clear manner, we use the notations of set theory and new
notations that we have developed for this system.

We give each word a \type signature" in the way that we currently give each word a signature
(in comments). In order to make things look similar to the current practise, we use the notation ( s1
--- s2 ) to indicate a words type signature. In this example, the word is expecting a type sequence s1
on entry and will leave the type sequence s2 on exit from the word.

It would be possible to de�ne a word with a type signature of ( a; b; c --- a; a ) to indicate
that the word will take three arguments of type a, b and c returning two values of type a on the stack.
Using this system, it is be possible to prove that the sequence of words that makes up a new word will
actually perform the required type transformation.

Let us take another example, this time we will use the word SWAP. This has a type signature of
( w1;w2 --- w2;w1 ). Notice that here we are using the type w1 to indicate a wildcard type, while the
type w2 indicates another wildcard type. Wildcards are items of unknown type.

We show a sequence of signatures by writing them next to each other. Thus a two word
(signature) sequence would be written ( s1 --- s2 )( t1 --- t2 ) where s1 is the stack image on entry
to the sequence and t2 is the stack image on exit from the sequence.

6.4 Rules

In order to discover if a sequence of type signatures perform the type transformation we require,
we use a number of rules for manipulating the signatures. The rules are broken into three logical groups:
composition; reduction and wildcard.

6.4.1 Composition Rules

The Composition Rules are used to rewrite two signatures into one new signature. We will use
the notation ( s1 --- s2 )( t1 --- t2 ) to indicate two adjacent type signatures, where s1, s2, t1 and
t2 are type sequences.

Rule 1: If s2 is null (there are no types indicated) then we can add the requirements of the second word
to that of the �rst, generating one signature.

( s1 --- s2 )( t1 --- t2 );#s2 = 0

( t1; s1 --- t2 )

For example: ( a; b --- )( c --- d ) = ( c; a; b --- d )

Here the �rst word takes arguments of type a and b o� the stack and returns no arguments. The
second word takes an argument of type c o� the stack and returns a value of type d . Hence the
argument c must be on the stack before this sequence is executed.
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Rule 2: If t1 is null (the second word takes no arguments) then we can append the results of the second
word to those of the �rst word.

( s1 --- s2 )( t1 --- t2 );#t1 = 0

( s1 --- s2; t2 )

For example: ( a --- b )( --- c ) = ( a --- b; c )

The second word takes no arguments and so the combination of the two sequences can be given by
simply adding t2 onto the end of s2.

Rule 3: If the last element of s2 does not match the last element of t1 then we have a type clash.

( s1 --- s2 )( t1 --- t2 ); last s2 6= last t1

0

Eg: ( a --- a; b )( a; c --- d ) = 0

Here we have the �rst word leaving an element of type b on the stack while the second word requires
an element of type c. This is a type clash and is written as 0.

6.4.2 Reduction Rules

The following Reduction Rule is used to reduce the type signatures until a composition rule can
be used on the sequence.

Rule 4: If the last element of s2 is the same as the last element of t1 then the types do not clash and
the argument passing is internal to the sequence of operations. Hence we can rewrite the sequence
removing this element.

( s1 --- s2 )( t1 --- t2 ); last s2 = last t1

( s1 --- front s2 )( front t1 --- t2 )

Eg: ( a --- b )( a; b --- c ) = ( a --- )( a --- c )

The �rst word passes an argument of type b to the second word. This is internal to the sequence
of operation and so does not need to be shown.

6.4.3 Wildcard Rules

The remaining rules are intended to provide for wildcards, where a wildcard argument is able
to match with an argument of any known type. We refer to these as wildcard rules even though they are
reducing the type signature and thus can be considered as reduction rules. We indicate a known type as
being a member of the set K and a wildcard type as being a member of the set W.

Rule 5: If the last element of s2 is of a known type and the last element of t1 is a wildcard we remove
the matching items, rename any additional occurrences of the wildcard in the second signature with
the known type from the �rst signature.

( s1 --- s2 )( t1 --- t2 ); last s2 2 K; last t1 2W

( s1 --- front s2 )(( front t1 --- t2 )[last s2= last t1])

Example: ( a --- b; c )( w1;w2 --- w1;w2;w1 )

) ( a --- b )(( w1 --- w1;w2;w1 )[c=w2])
) ( a --- b )( w1 --- w1; c;w1 )

The �rst word passes the second word an argument of type c which is matched with the wildcard
w2 expected by the second word. Thus we can determine the type of w2 for the second signature.
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Rule 6: If the last element of s2 is a wildcard and the last element of t1 is of a known type, we can
remove the matching types and replace any occurrences of the wildcards in the �rst signature by
the known type.

( s1 --- s2 )( t1 --- t2 ); last s2 2W; last t1 2 K

(( s1 --- front s2 )[last t1= last s2])( front t1 --- t2 )

For Example: ( w1;w2 --- w2;w1 )( a; b --- c )

) (( w1;w2 --- w2 )[b=w1])( a --- c )

) ( b;w2 --- w2 )( a --- c )

We can determine the type of w1 because it must match the type b given in the second word.

Rule 7: If there are wildcard types in the �rst signature and similarly named wildcard types in the
second signature, we rename the wildcards in the second signature by decorating them with a
prime.

( s1 --- s2 )( t1 --- t2 ); ran(s1 [ s2) \ ran(t1 [ t2) \W 6= ?

( s1 --- s2 )(( t1 --- t2 )[w 0=w ])

Eg: ( w1;w2 --- w2;w1 )( w1;w2 --- w2;w1 )

) ( w1;w2 --- w2;w1 )(( w1;w2 --- w2;w1 )[w 0=w ])
) ( w1;w2 --- w2;w1 )( w 0

1
;w 0

2
--- w 0

2
;w 0

1
)

We have renamed all of the wildcards in the second signature to be di�erent to those in the �rst
signature.

Rule 8: If the last element of s2 is a wildcard and the last element of t1 is a wildcard, we can remove
the matching wildcards, renaming all remaining occurrences of the wildcard in the second signature
with the wildcard from the �rst signature, provided that the wildcard does not already exist in the
second signature (there is not a name clash).

( s1 --- s2 )( t1 --- t2 ); last s2 2W; last t1 2W; last s2 62 ran(t1 [ t2)

( s1 --- front s2 )(( front t1 --- t2 )[last s2= last t1])

Example: ( w1;w2 --- w2;w1 )( w 0
1
;w 0

2
--- w 0

2
;w 0

1
)

) ( w1;w2 --- w2 )(( w 0
1
--- w 0

2
;w 0

1
)[w1=w 02])

) ( w1;w2 --- w2 )( w 0
1
--- w1;w

0

1
)

The wildcard w1 from the �rst signature has been matched with the wildcard w 0
2
from the second

signature. The operation of this rule is exactly the same as rule 4 with the exception that it is for
wildcard arguments and not for arguments of known types.

6.5 Simple Examples

Here are some examples of how you would compose two or more signatures together using these
rules.

1.

( a --- b; c; d )( w1;w2 --- w2;w1 )

( a --- b; c )( w1 --- d ;w1 ) Resolve wildcard (5)

( a --- b )( --- d ; c ) Resolve wildcard (5)

( a --- b; d ; c ) Combine (2)
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2.

( w1;w2;w3 --- w2;w3;w1 )( a; b --- c )

( b;w2;w3 --- w2;w3 )( a --- c ) Resolve wildcard (6)

( b;w2; a --- w2 )( --- c ) Resolve wildcard (6)

( b;w2; a --- w2; c ) Combine (2)

Since the naming of wildcards is arbitrary we could simply write the last line of this example as
( b;w ; a --- w ; c ).

3.

( w1;w2 --- w1;w2;w1 )( w1;w2 --- w1;w2;w1 )

( w1;w2 --- w1;w2;w1 )( w 0
1
;w 0

2
--- w 0

1
;w 0

2
;w 0

1
) Rename (7)

( w1;w2 --- w1;w2 )( w 0
1
--- w 0

1
;w1;w

0
1
) Match wildcards (8)

( w1;w2 --- w1 )( --- w2;w1;w2 ) Match wildcards (8)

( w1;w2 --- w1;w2;w1;w2 ) Combine (2)

4. Let us assume the following signatures for Forth words:

DROP ( w --- )

OVER ( w1;w2 --- w1;w2;w1 )

SWAP ( w1;w2 --- w2;w1 )

ROT ( w1;w2;w3 --- w2;w3;w1 )

We can show that the sequence OVER ROT DROP has the same type signature as the word SWAP:

( w1;w2 --- w1;w2;w1 )( w1;w2;w3 --- w2;w3;w1 )( w --- )

( w1;w2 --- w1;w2;w1 )( w 0
1
;w 0

2
;w 0

3
--- w 0

2
;w 0

3
;w 0

1
)( w --- ) (7)

( w1;w2 --- w1;w2 )( w 0
1
;w 0

2
--- w 0

2
;w1;w

0

1
)( w --- ) (8)

( w1;w2 --- w1 )( w 0
1
--- w2;w1;w

0

1
)( w --- ) (8)

( w1;w2 --- )( --- w2;w1;w1 )( w --- ) (8)

( w1;w2 --- w2;w1;w1 )( w --- ) (2)

( w1;w2 --- w2;w1 )( --- ) (8)

( w1;w2 --- w2;w1 ) (2)

6.6 Multiple Signatures

It is possible for a Forth word to have more than one acceptable signature. Indeed there are
many words in Forth that require more than one signature. For this reason we have introduced the \+"
symbol to indicate the existence of another possible signature for the same word.

Let us take the Forth word AND, there are two functions associated with this word. The �rst
is that of a logical (Boolean) AND, while the second is that of a binary (bitwise) AND. The signature for
a Boolean AND is ( 
ag ;
ag --- 
ag ), while the signature for a bitwise AND is ( logical ; logical ---

logical ), thus the true signature is:

sig(AND) = ( 
ag ;
ag --- 
ag )+ ( logical ; logical --- logical )

The correct signature will be used in composition due to the naming of a known type. Let
us assume that the Forth word IF has the signature ( 
ag --- ). When we come to compose the
sequence AND IF we will know (from the signature of IF) that the Boolean AND signature is required.

Notice that we have also introduced the notation sig(�) to indicate all of the possible signature
compositions of the phrase �.
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6.7 Pass by reference

We indicate a pointer to a known type by writing �nk . Where the �n is used to indicate n levels
of indirection and the k is the known type being referenced. For simplicity we write �k to indicate �1k .
The notation �0k is the same as the basic type k without indirection.

A possible de�nition of the Forth word @ would be ( �w --- w ), however we have not
de�ned the pointer type to be able to point to wildcard types. Hence the actual signature for @ is:

X

k2K

( �k --- k )

This produces a collection of signatures, (one for every entry in K). The correct signature will
be selected when this word is being composed.

6.8 Control Structures

We use the ideas of multiple signatures (and summation) to show all of the possible paths
through a control sequence. This is best shown by example.

Let us take the Forth statement: IF � ELSE � THEN. We must compose the signature for both
cases of the IF condition. Hence for a true condition the sequence ( 
ag --- )sig(�) exists, while for
a false condition the sequence ( 
ag --- )sig(�) exists. These two signature can be written as one
multiple signature:

( 
ag --- ) (sig (�) + sig (�))

For a more complex control structure, such as BEGIN � WHILE � REPEAT, we have no way of
knowing how many times the loop will be executed. We must therefore produce a multiple type signature
for all the possible di�erent number of iterations:

1X

i=0

(sig (�) ( 
ag --- )sig (�))i sig (�)( 
ag --- )

However, it is normally the case that a loop of this form is \balanced" in terms of its stack
arguments. In the case of a balanced stack, the loop can be simpli�ed to a single term. If the sequence
sig(�)( 
ag --- )sig(�) can be reduced to a signature of ( s --- s ), (ie a balanced signature) we
can reduce this signature to:

( s --- s )sig(�)( 
ag --- )

In order to fully satisfy ourselves that a program is complete, we must follow though every single
path of execution. We can say that a word de�nition (or program) is type correct if its expected input
and output types can be reduced to the single signature holding the same input and output types.

For example: Let us de�ne a Forth word EXAMPLE which takes an input signature of s and is
expected to produce an output signature of t . The word is type correct if

sig(EXAMPLE) = ( s --- t )

It should be noted that we are currently unable to check words that make use of the EXECUTE
word. For example, given the de�nition:

: TEST ( char --- ) 'TEST @ EXECUTE ;

it would be possible for us to check that the body of TEST is correct. However the action of TEST is to
execute the de�nition, the execution token of which, is stored in the variable 'TEST. As we do not know
the signature of this de�nition, we can not check against the speci�cation given, ie ( char --- ).
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This problem may be overcome by expanding the rôle of the execution token to include a type
signature within a type signature. Ie, the signature ( char, ( char --- ) --- ) indicates a character
and an execution token are expected where the execution token has the signature of ( char --- ).
There are a number of ways in which one might resolve this restriction, several of which are currently
under investigation.

6.9 Casting

There are occasions when a programmer will want to convert the type of a stack item that is
not catered for by the default matching type signatures. We have introduced a notation that will allow
the programmer to alter the current type signature at compile time.

Let us assume that the programmer would like to convert a single-cell integer into an execution
token. He would have to add the following line to his code:

<< int --- token >>

Where the Forth word << enters into a \alter type signature" mode. He then gives a represen-
tation of what he expects the current stack type signature to be (int). The word --- is used to indicate
the end of the current stack and the start of a description indicating what he would like the current stack
type signature to become (token). Finally, the word >> replaces the current type signature with the
required signature.

Obviously, there are many checks we can make at this point. The number of stack items expected
(between << and ---) must be equal to (or less than) the actual number of item calculated to be on the
stack (and of the correct type). The number of stack items given in the expected part must be the same
as the number given in the wanted part (between the --- and >>), thus protecting the compilers image
of the stack.

6.10 Strong vs Weak Typing

6.10.1 Strong Typing

In a strongly typed system, every variable will have a known type associated with it. Hence a
single-cell variable that has been de�ned to hold an integer could not hold a token as that would lead to
a type clash.

A strongly typed system would be di�cult to implement compared to a weakly typed system.
It would have to keep track of the type associated with each memory cell in the system where as a weakly
typed system would not retain this information. Due to the nature of types in Forth, a strongly typed
system would require the programmer to give additional information. See sections 4.6 and 7.3.1 for a
discussion on Forth's type structure.

In a strongly type system, the programmer would have the bene�t of peace of mind, insomuch
as he knows that the system will report an error if he attempts to develop code that uses the stack in
what would be considered the wrong way.

This can be seen by examining the following code:

X @ EXECUTE

This would have the following type signatures:

( --- �int )( �int --- int )( token --- )

This would obviously clash on the ( �int --- int )( token --- ) section.
In order to compile this code the programmer would have to write:
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X @ << int --- token >> EXECUTE

To convert the int returned from the @ into the token that is excepted by EXECUTE. Thus the programmer
has to explicitly instruct the compiler to make the conversion and allow this code.

6.10.2 Weak Typing

In a weakly typed, system all memory cells will be de�ned to hold any of the known types. This
is simpler to implement, however it does not bring with it the same peace of mind that a strongly typed
system would.

If we take the same code as before:

X @ EXECUTE

which will now have a type signature of:

( --- �k )( �token --- token )( token --- )

We can see that in the weakly typed system the X returns a referenced known type (�k) this will
be matched with the referenced token (�token) type required by @. Thus, this code will be acceptable to
a weakly typed system. Hence, a weakly typed system can aid in program construction but will not be
able to catch misusage of variables.


