
28

Chapter 3

Mixed Languages interface

In this chapter we describe a mixed languages interface developed for use between the C and
Forth languages. The general ideas and principles used in developing this code are independent of the
Forth and C systems being used. This interface has been compiled under a number of di�erent systems
including Borland's \Turbo C", the ZorTech C and C++ compilers in addition to the Microsoft C
compiler.

3.1 Principles

The basic principle of the interface is that su�cient state information is stored when switching
between Forth and C operations for both languages to appear to be in full control of the system. The
system starts with the C main program which loads and executes the Forth system. Control will now
stay with the Forth system until such time that Forth passes control back to C. At this point, C sees
the Forth parameter stack as a simple data structure. The C code will pop an item o� the Forth
stack and use it as an index into a function table. The requested function is then executed and control
is returned to Forth.

3.2 Argument Passing

All of the argument passing between the two languages is performed by the C system manipulat-
ing the Forth parameter stack as a data structure. Several C functions have been de�ned to manipulate
the Forth stack. These include operations to drop an item, pop an item, push a value and a function
that allows us to index into the stack.

In order to make this system more usable, these functions have been de�ned as type independent
macros, thus they take a type indicator as an argument. To pop an integer o� the stack we would
write the statement \x = POP(int);" and to push a 
oating point value onto the stack the statement
\PUSH(float, n);" would be used.

3.3 Programming

In order to show the way in which you would program some code, let us look at an interface to
the memory allocation system (C heap management).

0This is a chapter taken from the Ph.D. thesis \Practical and Theoretical Aspects of Forth Software

Development". A full copy of the thesis is available from the British library. Both the this chapter and

the thesis are Copyright c
 Peter Knaggs.



Practical and Theoretical Aspects of Forth Software Development: Mixed Languages interface 29

getmem()

{

void *ptr;

int size;

size = POP(int);

ptr = (void *)malloc(size);

PUSH(void *,ptr);

}

Figure 3.1: The C getmem function.

The code fragment in �gure 3.1 is placed in the users C �le. A reference to this function must
be placed into a jump table (�g 3.2).

TBL jmptbl [] =

{

...

/* Function 8 */ getmem,

...

}

Figure 3.2: Example jump table.

In the Forth system, a word has been de�ned that calls the C code via a vector address. To
execute this function you would de�ne a Forth word such as GETMEM as shown in �gure 3.3.

: GETMEM 8 CCALL ;

Figure 3.3: The GETMEM word.

This would be used as `1000 GETMEM'. The C code pops the value (1000) into an integer variable
(size). It will then return a pointer to the memory (ptr) allocated by the C system call.

In our implementation, we have de�ned two Forth words CCALL and -CCALL to handle C
function calls. Suppose that we wanted to de�ne words to access the function table as given in �gure 3.4,
we would write the code given in �gure 3.5.

The Forth words ARC and CIRCLE are de�ned to call the C code with the relevant function
number. However, the BAR function is used as a place holder. If at some time in the future we wish to
de�ne the BAR word, we would simply remove the - from the -CCALL that is holding BAR in place.

3.4 The C Heap

The C system assumes that it has full control of the system memory. Due to this assumption,
we must take care when deciding how to load the Forth system into memory.

The correct method is to request space for the Forth system from the C heap. Forth should
request memory only via a call to the C system. If the Forth system were to invoke the memory



Practical and Theoretical Aspects of Forth Software Development: Mixed Languages interface 30

TBL jmptbl [] =

{

/* Function 1 */ draw_arc,

/* Function 2 */ draw_bar,

/* Function 3 */ draw_circle

}

Figure 3.4: Another example jump table

CCALL ARC

-CCALL BAR

CCALL CIRCLE

Figure 3.5: Example of using CCALL and -CCALL to de�ne words

management system calls directly, this may cause the C heap to become invalid.
This is particularly relevant with regard to Ms-Dos where some of the C systems we have used

attempt to expand their heap by resizeing the memory space allocated to it rather than by requesting a
fresh memory area. If an area of memory allocated to Forth prevents this operation, the C system will
incorrectly assume that it has run out of available memory.

3.5 Organisation

Our system has been split into three modules. The �rst of these is the main C module that
holds the C main() function. A second module was written to hold non-portable code (this loads the
Forth system and handles the transfer of control between the two systems). Neither of these modules
should be changed by the user. We have placed them into a C library �le to be linked in with the third
module supplied by the user.

This third module holds all of the users C code and the function jump table. The user compiles
this module and links it with the required libraries (including ours) to produce a new C base program.

The source of this interface is far too large to be included here. The full, documented, sources
to the interface (including various development macros or scripts), along with a number of technical
comments about the system is given, in Appendix C.

3.6 Generalisation

We have made our implementation as general as possible. However, the two routines to load
and initialise the Forth system and to transfer control between the two systems have to be speci�c to
the systems being used.

In our implementation, it is assumed that all memory references are in long (or far) form. Thus,
it is necessary that all the modules be compiled using the large memory model. This is a restriction
imposed on use by using a segmented memory structure.

All of the �les have been written using standard coding. The Forth code is a very simple
change to the compiled system. The C code has been written to the Ansi standard while the assembler
code is written using the standard Microsoft assembler.


