Chapter 2

Using IBM’s NETBI0S

A general overview of the IBM NETBIOS system is given and its Multi-Tasking abilities are
discussed. A FORTH interface that exploits these is presented and a “Net-Chat” program, which illustrates
the integration of NETBI10S with FORTH’s Multi-Tasker 1s described.

2.1 Introduction

The Network Basic Input/Output System (NETBI0OS) is an “application program interface”
(IBM Corporation 1987) between an application task and a Local Area Network (LAN) designed to provide
a common communication capability between IBM Pcs and compatibles. It has been implemented on a
wide variety of physical networks including FEthernet, Token ring, Insertion ring, etc.

NeTBI0S provides a communication link (or connection) between
named entities using two main forms of communication, known as sessions and datagrams. Any ap-
plication may add a name to the network. In a FOrRTH Multi-Tasking system it would be possible to
provide two separate application tasks, each with its associated name, on the same host machine. The
two tasks would then communicate with each other using the NETB10S and neither task need know where
the other is situated.

All requests to the NETBI10S are made using a Network Control Block (NCB) supplied by the
application program. The NCB holds parameters for the network call and, on completion, contains status
information.

2.2 Functions

The functions provided by NETBI0S can be broken down into five groups: Naming, Sessions,
Datagrams, Broadcasting and General Housekeeping. (See (IBM Corporation 1987) or (Nine Tiles 1988b)
for a complete breakdown of the NETBIOS functions.)

2.2.1 Naming

Each network card has its own unique physical name. To use this name in an application
would be too restrictive as such an application would be forced to know with which physical system to
communicate. NETBI10S provides some naming capabilities to allow applications to refer to logical, rather
than physical, names thus allowing a network application to be independent of any physical machine.

OThis is a chapter taken from the Ph.D. thesis “Practical and Theoretical Aspects of Forth Software
Development”. A full copy of the thesis is available from the British library. Both the this chapter and
the thesis are Copyright © Peter Knaggs.

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 10

The Add Name function will add a unique name to the network. This will provide a logical
name for the physical system performing the add name function. Each physical system may have several
logical names that could be used by different tasks or applications.

The function Add Group Name will add a group name to the network. Several machines may
have the same group name and will then be classed as members of the same group. This facilitates
communication to a selected group of machines.

Remove is used to remove a name from the Network. If the name is an individual name, the
name is completely removed. If it is a group name, the machine is removed from the group.

2.2.2 Sessions
A Session provides a one-to-one connection, analogous to a telephone call.

A Session is started by one application making a call to another. The called application must be
listening for an incoming call. To call another application, the Call function is used. The Listen function
is used to wait for an incoming call, while Hangup is used to disconnect the call. If you call a group
name, only one member of the group will receive the call.

Once the connection has been established, the applications can exchange data (up to 64K at a
time) with the guarantee that it will arrive. To exchange data, one application must use the Transmit
function while the other is using a Receive function. If one side issues a transmit before the other has
issued the corresponding receive, the data will be buffered until the receive is issued.

2.2.3 Datagrams
A datagram is a one-shot communication of up to 512 bytes.

A Datagram Transmit will send a datagram to a given name. The receiving name must be
waiting to receive it otherwise it will be lost. When a datagram is sent to an individual name, only that
name will receive it. However, if it is sent to a group name, all the members of that group will receive a
copy.

A Datagram Recewe will wait for a datagram to be received by a given name. A datagram
transmitted from any name to the given name will be accepted.

2.2.4 Broadcasting

A Broadcast 1s a special form of datagram that is sent to all names. The Broadcast Transmit
function will send a datagram to all names known to the network. The Broadcast Receive function is
similar to the datagram receive function, except it will only receive a Broadcast message.

2.2.5 House keeping

There are four basic functions that are designed for the network manager to control the network
system. The Reset function is used to totally reset the network card. Network Status will return the
current status of the network card. A Cancel function is used to cancel a given command. Finally the
Un-Link function disconnects from a remote disk server.

2.3 Invoking NETBI10S Functions

All NeTBI10Ss functions are invoked in the same manner. The data required by the function is
placed in the relevant fields of the NcB and the NETBI0S system call is invoked. This will take the NCB
and post 1t into the NETB10S for processing. The actual processing of the function is interrupt driven
and will run concurrently with the application program.

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 11

NETBI0s has three different ways of returning back to the application program. The first is
referred to as a Wait function, where NETB10S will process the complete function before returning to
the application.

The second is to post a No-Wait function. NETBI0s will add the function to its internal list
of functions and return to the application directly. The application program must poll the “command
complete” flag of the NCB to determine if the NETBI10s has completed the function.

The final method is to post a No-Wait function giving the address of an interrupt routine. The
NETBI0s will add the function request to its internal list and return to the application program. When
the function has been completed, it will invoke the given interrupt code.

2.4 Multi-Tasking

In order to exploit the concurrent execution abilities of FORTH and the NETBIOS, we use the
“No-Wait with Interrupt” invocation method. When a NETBI0S function is used, the invoking task will
typically execute a STOP after making the NETB10S call.

In the ForTH/NETBIOS interface, a field has been added to the NCB to store the identity of
the invoking task. The interrupt routine passed to the NETBIOS is always a “wake task” routine that
extracts the task identity from the NCB and sets the task status to active, thus waking the task associated
with the NETBI10S function.

More than one task can have a NETBIOS request pending. For example, one task may be
waiting on a Broadcast Receive, whilst another is waiting on a Datagram Transmit. Any one task may
have several NETBI10S requests pending. For example, in the “Net-Chat” application, one of the tasks
posts four Datagram Receive requests to ensure that no incoming datagrams are lost (see sections 2.5.2
and 2.9). When the task is made active it has to poll the NCBs of the pending commands in order to
discover which of them has completed.

2.5 Examples

In this section we provide the reader with two examples of how the ForRTH/NETBIOS interface
can be used.

2.5.1 Block Transfer

To transfer a block of data from one system to another, both systems must make themselves
known to the network. This would be done by each of them creating an N¢B. They would then add their
individual names to the network.

System 1 System 2
UEWNCB NCB UEWNCB NCB
“ PETER" NCB ADD-TAME “ JOHN" NCB ADD-NAME

Now PETER may call JOHN. The connection is made when Peter is calling John and John is listening for a
call from Peter (or when John makes a call to Peter, although Peter must be listening for the call in this
case).

" JOHN" NCB PHONE " PETER'" NCB LISTEN
STOP STOP

PETER will now send a block of data over the network to JOHN.

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 12

9 BLOCK (Address of buffer) 10 BLOCK (Address of buffer)
1024 (Number of bytes) 1024 (Number of bytes)
CB (NCB to use) CB (NCB to use)

TX STOP (Transmit) RX STOP (Receive)

One of the systems must now disconnect. Our convention is that the caller is in charge of the connection
and hence is responsible for the disconnection.

ICB HANGUP (Disconnect)
The STOPs are required to allow other tasks to continue executing and to synchronise communications.

2.5.2 Net-Chat

A simple example application program has been developed along the lines of the “Net-Chat”
program by Glass (1989). This is a Citizen Band radio emulation, in that if anyone sends a message over
“Net-Chat”, it will be received by all other systems running the application.

The basic principle to a “Net-Chat” implementation is to have a group name of “NET-CHAT”
and an individual name for each person on the system. The screen is divided into two sections with a
small 5 line window provided for the Net-Chat display and a larger second window displaying the normal
OPERATOR environment.

A task (“CHAT-TASK”) will post four Datagram Receive requests on the group name NET-CHAT.
When a datagram is sent to NET-CHAT, all the members in the group will receive a copy (including the
sender). When receiving messages, CHAT-TASK will scan through the NCBs to discover which one was
honoured. It will take the message buffer of the NcB, display it in the Net-Chat window and will use the
NCB to post a new Datagram Receive request. If only a single Datagram Receive was posted, it would be
possible to miss a datagram that arrives between the previous datagram being received and the Datagram
Receive request being re-posted.

To send a message, the user must type the word CHAT. This will ask for a message to be sent.
It will send the message buffer to the group name NET-CHAT.

The code and a more detailed description, is given in section 2.9.

2.6 Problems

As this system was originally intended for use with the Novix micro-processor system, it was
developed using the PolyFORTH system. It was later ported to the FORTH++ system (see chapter 1). In
this section we describe some of the problems that had to be overcome before this system became fully
operational.

2.6.1 PolyFORTH

The PolyFORTH system operated correctly when used in a network based environment. When
we loaded the NETBI10S interface code, the system stopped operating altogether. The PolyFORTH code
appeared to be correct while the interface code also appeared to be correct.

After some experimentation, we discovered that the problem only occurred when the PolyFoRTH
serial communications package was loaded. By forcing the system not to load this package, the problem
was overcome. In order to continue with this project, it was necessary to convert this system for use with
the FORTH++ system. Thus, the real cause of the problem was never investigated.

2.6.2 Interrupts

The original version of this system used the No-Wait and Poll method of posting a NETBI0S
function. This meant that when an application task had posted a NETBI0S function, it would enter
a loop testing the command complete flag of the relevant NCB. As the task is actively waiting for the
function to complete, 1t 1s scheduled for time by the multi-tasking scheduler.

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETBI10S 13

The system was redeveloped to take advantage of the “No-Wait with Interrupt” ability of the
NETBI10s. The system developed to utilise this facility is described in section 2.4. The task posting a
NETBI0s function is allowed to continue execution. Eventually the task will execute a STOP. When the
NETBI0s function has been completed the NETBI10S will invoke the given interrupt code. This code will
reset the associated task’s status to active thereby making sure that the task will be executed.

This allows a task to post as many NETBI0s functions as it requires. It also allows the task to
be removed from the scheduler’s active tasks list. When the NETBIos function has completed! it will
add the task to the active task list, thus removing the responsibility of polling the command complete
flag altogether.

2.6.3 Porting

The port from PolyFORTH to FORTH++ was a very simple one with only one small problem.
Nomne of the code had to be changed with the exception of the two machine code words.

The PolyFORTH assembler system is designed to be as processor independent as possible, while
the assembler provided with the FORTH4++ system is designed around the Intel 80x86 family of processors.
The two machine code words had to be converted from the PolyFORTH assembler form into the FORTHA++
form. The function of the code was not altered in any way, nor was the machine code produced altered.
The only alteration was to the source code in order to produce the same object code.

We also took this opportunity to exploit FORTH++"s ability of holding 64 KBytes of strings to
enhance the error messages and improve the error handling provided by the interface.

2.7 Comparison with C interface

When compiled, the NETBI0S interface shown in section 2.8 forms a run-time library. The
library comprises of 186 lines of FORTH code and compiles to just 1.2 KBytes (when compiled under
ForTH++). A simple Cinterface (taken from Schwaderer (1988)) takes some 110 lines of code (1.8 KBytes
when compiled) and 270 lines of compile time definitions to provide the same functionality as the (net)
word. The C interface requires the application developer to have a full knowledge of the NETBI0S and
the N¢B. A full C library that provides the same functionality as the interface shown in section 2.8
requires some 115 KBytes (when compiled).

As the C language does not directly cater for multi-tasking, such an interface has to use the
No-Wait or No-Wait and Poll techniques for invoking a NETBI10S function. Using the No-Wait and Pool
technique puts the onus on the application programmer to poll the command complete flag, thus does
not provide the full abstraction one might hope for.

2.8 Interface Code

The following is an annotated source listing of the NETB10S Interface provided for use with the
FoRTH++ system.

2.8.1 Error Handler

Here we define the word “(netable)” to display an understandable network error message. It
only displays the errors documented in the NETBIos manual (IBM Corporation 1987). Any error code
not defined in the manual will be displayed as “Unknown”.

HEX

: (netable)

Lor any one of the NetBios functions associated with the task has completed.

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 14

CASES
01
03
05
06
08
09
OA
OB
oD
OE
OF
11
12
13
14
15
16
17
18
21
23
24
26
34
DRO

."" Unknown"

END-C

CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .
CASE .

P

ASES

Illegal Buffer Length"
Illegal Command"

Timed Out"

Message Incomplete"
Illegal Session Number"
No Resource Available"
Session Closed"
Command Cancelled"
Local Duplicate Name"
Name Table Full"

Name Not Registered"
Session Table Full"
Call Rejected"

Illegal Name Number"
Destination Not Found"
Name Hot Found"

Remote Duplicate Name'
Name Deleted"

Session Aborted"
NetBios is busy"
Invalid LAN number"
Command not found"
Illegal Cancel Command"
Illegal Data Format"

END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE
END-CASE

We now define the default action to be taken when a network error occurs. This is defined in the word
(neterror), it will abort the current operation and display an error message of the form:

Network Error code:

15 (Name Not Found)

Displaying the network return code and a text message relating to the code (if known). Note that the
word ?CASE takes a flag of the stack and executes the code between the ?CASE and the END-CASE if the
flag 1s true, otherwise it simply skips over the code.

(neterror) (n --)
CR .'" Network Error code: " DUP . ASCII (EMIT

CASES

(netable)

END-C

ASES

FF CASE ." Not Finished"
DUP 50 FF WITHIN 7CASE ." Hardware Fault"
DUP 40 50 WITHIN 7CASE .'" Unusual Condition'' DROP END-CASE

ASCII) EMIT CR ABORT

DECIMAL

END-CASE
DROP END-CASE

Next we define the network error handling. This is provided by the word NETERROR, it takes the NETBI0S
return code and invokes the word, the execution token of which is stored in the user variable *NETERROR,
if there has been an error, otherwise it simply removes the return code. The defining word USER* is used
to define a user variable at the next free slot in the user area.

USER* ’NETERROR

: NETERROR (n --)

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 15

?DUP IF °’NETERROR @ EXECUTE THEN

Finally we initialise the network error handler to be our default error handler.

> (neterror) ’NETERROR !

2.8.2 Network Control Block

In this part of the system we define the logical names for the fields of the network control block
(NCB), these are the names as given in the manual. Tt should be noted that we are using the @ symbol to
indicate a segment and offset pair in accordance with the manual. The run-time action of these words is
to return the address of the given field in the given NCB.

The word pos is a defining word, the size of the field (in bytes) is given on the stack, pos will
then define a word, the action of which is to add the required byte offset to an address in order to give
the address of the required field. We have added the TASK@ field to hold the address of the invoking
task. This is not part of the standard NCB structure but has been added to allow the interrupt routine
to identify the associated task. Finally, the constant ncb_size is defined to hold the size of our NCB
structure (in bytes).

: pos CREATE OVER C, + DOES> C@ + ;

0 \ Initial byte count

1 pos CMD 1 pos RETCODE 1 pos LSH 1 pos NUM
4 pos BUFFERQ 2 pos LENGTH 16 pos CALLNAME 16 pos NAME
1 pos RTO 1 pos STO 4 pos POST@ 1 pos LANA_NUM

1 pos CMD_CPLT 14 pos RESERVED 4 pos TASK@

CONSTANT ncb_size

Next we define some NCB control words. The first of these is NEWNCB, this will allocate ncb_size bytes
of memory to act as an NCB. It also creates a word, the action of which is to place the address of this
memory area onto the stack.

: NEWNCB (--)
CREATE HERE ncb_size DUP ALLOT ERASE

The second control word is TIME-0UT, this is used to set the “Receive” and “Send” time-outs for a given
NCB. The time-outs are given in increments of % seconds. The system is initialised to no time-outs by
default.

: TIME-OUT (Receive-Time-Out Send-Time-Out NCB --)
DUP STO ROT SWAP C! RTO C!

The last of the NCB control words is COPYNCB. This is used to copy the data from one NCB to another.

: COPYHNCB (Source-NCB Destination-NICB --) ncb_size CMOVE

)

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 16

2.8.3 Assembler Interface

This is where we have developed the assembler code that interfaces between the FORTHA+
system and the NETBI0S.

First, we define a word FIELD that returns the byte offset of a named field in the NCB. As this
word is being defined exclusively for use in code level definitions, we place its definition in the ASSEMBLER
wordlist.

ASSEMBLER DEFINITIONS
: FIELD ’> >BODY Ce ;

FORTH DEFINITIONS

We now define the assembler word (post). This is the code that will be invoked by NETBI10S when it
has completed a No-Wait with Interrupt operation. On entry to this code, the ES:BX register pair are
pointing to the start of the NOB that has completed.

This code is invoked by an interrupt request from the NETBI10Ss. As a result, we can not make
any assumptions about the state of the system (other than the value of ES:BX). The code given in (post)
uses the address stored in the TASK® field of the NCB to discover which task is related to the NcB. It will
then place a 1 in that task’s STATUS variable, thereby adding that task to the scheduler active task list.

CREATE-INTERRUPT (post)
DS PUSHSEG BX PUSH AX PUSH ES AX MOV AX DS MOV
FIELD TASK@ 2+) BX@ AX MOV AX PUSH
FIELD TASK@) BX@ AX MOV AX BX MOV
DS POPSEG 1 # USER STATUS MOV
AX POP BX POP DS POPSEG
IRET
END-CODE

This code is given as it is provided in the FORTH4+ interface. We now give the code again in a commented
Intel assembler format.

post: push ds ; Save the registers
push bx ; We are going to use
push ax
mov ax,es ; Copy ES to DS

mov ds,ax

mov ax,[bx+66] ; Get the DS for the task
push ax ; Save it for later

mov ax,[bx+64] ; Get the offset of the task

mov bx,ax ; Save in BX

pop ds ; Recover task’s DS

mov [bx+0],#1 ; Set task’s status to active
pop ax ; Recover registers

pop bx

pop ds

iret ; Return from interrupt

The next word we define is (net). This word will initialise the NCB with a given command (CMD), buffer
(BUFFERQ) and post routine (POSTQ). It will then invoke the NETBIOS interrupt asking the NETBIOS to

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 17

perform the function indicated by the command number. The POST@ value passed to this word is the
16 bit offset of the (post) routine. If this offset 1s 0, an address of 0000:0000 is placed in the POST@
field. When the NETBI10S returns from the interrupt it provides a “return value” that is passed back to
the calling word.

HEX

CODE (net) (NCB Buffer Command ’Post -- Retcode)
CX POP AX POP DX POP DI POP
AL FIELD CMD) DI@ MOV DS AX MOV
AX FIELD BUFFER@ 2+) DI@ MOV DX FIELD BUFFER@) DI@ MOV

CX AX MOV O # AX = NOT IF CS AX MOV THEN

AX FIELD POST@ 2+) DI@ MOV CX FIELD POST@) DI@ MOV
DS AX MOV

AX FIELD TASKe 2+) DIe MOV BX FIELD TASK@) DI@ MOV

ES PUSHSEG BX PUSH DS AX MOV AX ES MOV DI BX MOV
5C INT BX POP ES POPSEG O # AH MOV AX PUSH

NEXT

END-CODE

DECIMAL

Again, this code is given as it is provided in the FORTH++ interface. We now give a version of the same
code, with comments, in Intel assembler format.

net: pop cx ; CX = POSTQ@ offset
pop ax ; AX = NetBios command
pop dx ; DX = BUFFER@ offset
pop di ; DI = NCB offset
mov [di+00] ,al ; Set NetBios command in the ICB
mov ax,ds
mov [di+06] ,ax ; Set the BUFFER@ segment to the current DS
mov [di+04] ,dx ; Set BUFFER@ to the given offset
mov ax,cx ; Is POST@ offset zero?
cmp ax,#0
jne $1 ; Yes, then AX and CX = O
mov ax,cs ; No, then set AX to current CS
$1: mov [di+46] ,ax ; Set POST@ segment to CS (0000 if CX=0000)
mov [di+44] ,cx ; Set POST@ offset to CX
mov ax,ds
mov [di+66] ,ax ; Set TASK@ segment to current DS
mov [di+64] ,bx ; Set TASK@ offset to task user area
push es ; Save registers ES:BX
push bx
mov ax,ds
mov es,ax ; ES:BX = NCB address
mov bx,di
int 5Ch ; Invoke NetBios interrupt
pop bx ; Recover ES:BX
pop es
mov ah,#0 ; Clear top byte of "Return Value"
push ax ; Return "Return value"

NEXT ; Re—enter inner interpreter

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 18

2.8.4 Low-Level interface

The next part of the interface defines the low-level FORTH words that are used to interface with
the assembler definitions.

The first of these words is +NET. It will post a NETBI0s function and wait for it to complete
before returning. It will then process the “Return Value”, checking it for errors.

: +HET (Buffer NCB Command --)
ROT SWAP O (net) NETERROR

The second word being -NET which will post a network function to the NETBI10S system using the No-
Wazit with Interrupt variant of the command. The calling task will be placed in the scheduler’s active list
on completion of the function. However, the task is not removed from the active list by this word. This
is left to the application.

: -NET (Buffer NCB Command --)
128 OR ROT SWAP (post) (net) NETERROR

We now define the word COMPLETE to check the NOB command complete
(CMD_CPLT) flag. It will return a TRUE when the function has completed. This word is provided so
that an application may test which of several possible NETBI0S commands has been honoured (see
sections 2.4 and 2.5.2 for a description of its use and section 2.9.2 for an example of its use).

: COMPLETE (NCB -- £)
CMD_CPLT C@ 255 = NOT

The final definition in this section is NERROR which is used in conjunction with the COMPLETE word. It
will check the return code (RETCODE) of a given NCB returning the NETBIOS return code, if the function
associated with the NCB has completed, otherwise it returns a -1.

: NERROR (NCB -- n)
DUP COMPLETE IF RETCODE C@ ELSE DROP -1 THEN

2.8.5 General Support

Here we define a number of words for the general administration of the network. Most of these
commands would only be used by a supervisor or supervising software. These commands do not have
No-Wait variants, thus they all wait for the NETB10S command to complete before returning to the
caller.

NET-RESET will Reset the network with the support for the given number of sessions and the
given number of outstanding commands using the given NCB.

: NET-RESET (#sessions #commands NCB --)
DUP >R NUM C! R@ LSN C! O R> 50 +NET

NET-CANCEL is used to Cancel a NETBI10S command. The NETB10S command associated with NCB1 is
cancelled (removed from the command-pending list). Due to the way that the NETBIOS system operates,
it requires a second NCB to be used to 1ssue the cancel command.

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 19

: NET-CANCEL (NCB1 NCB2 --) 53 +NET ;

The UNLINK word will disconnect the node from the “Remote Program Link”. This is only used when
booting the system over a network.

: UNLINK (NCB --) DUP 112 +NET ;

Finally the NET-STAT word returns the current status of the network to the given buffer (addr) of a given
maximum size (Lenl bytes). Returning the number of bytes (Len2) of actual data received. This data is
dependent on both the network hardware and the particular NETB10S implementation.

: NET-STAT (addr lenl NCB -- len2)
SWAP OVER LENGTH DUP >R ! DUP CALLNAME ASCII * SWAP C!
51 +IET R> @

2.8.6 Naming Support

In this section we define the FORTH words that will give the programmer access to the NETBI0S
“Naming” functions.

Firstly, the word (name) is defined. This word takes a counted string (s) as a symbolic name.
It will place the name in the given NCB’s NAME field. This takes a fixed 16 character name, thus (name)
also pads out the field with zeros. Having copied the name into the NAME field, it will then invoke the
NETBI0S function given in n (either Add Name or Add Group Name). Notice that it uses +NET to invoke
the function, thus the system will wait for the name to be added to the local name table before returning.
This word forms the bases of both the ADD-NAME and ADD-GROUP words.

: (name) (s NCB n --)
>R DUP NAME DUP 16 ERASE ROT COUNT ROT SWAP CMOVE
O SWAP R> +NET

The word ADD-NAME is used to add an individual name to the list of logical names for this node. It takes
a counted string (s) and an NCB. It will add the name to the system, associating the name with the NCB.
Any command sent out using that NCB will be issued under the given name. You must copy the NCB if
you wish to post more than one (simultaneous) command under this name.

: ADD-WAME (s NCB --) 48 (name) ;

The ADD-GROUP command works in much the same way as the ADD-NAME command with the one exception
that the name added to the local node 1s a group name. Thus several different nodes may be known by
the same name.

: ADD-GROUP (s NCB --) 54 (name) ;

The final word in this section is REMOVE-NAME. This will remove the name associated with the NCB from
the local name table. If the NCB 1s associated with a group name, the node is removed from the group.
The name is disassociated from the NCB, thus allowing the NCB to be associated with another name.

: REMOVE-NAME (ICB --) O SWAP 49 +NET ;

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 20

2.8.7 Session Support

In this section, we provide words that allow the application programmer to access the session
handling facility of the NETBI1OS.

Before we define the words that the application programmer is to use, we first define two words
that perform most of the operations. These words are internal to the interface and are not meant to be
used by the application programmer.

The first of these is (cname) which takes a counted string (s) and places it in the CALLNAME
field of the given NCB. As with the (name) word, this also pads the field out to 16 characters by adding
zeros. (cname) not only leaves the NCB address on the stack, it also places a 0 onto the stack to be used
as a null buffer address. See the words PHONE and LISTEN to see how the word is used.

: (cname) (s NCB -- O NCB)
DUP CALLNAME DUP 16 ERASE ROT COUNT ROT SWAP CMOVE O SWAP

The second internal word is (len). This will simply place the given buffer length (1en) into the LENGTH
field of the given NCB without removing the NCB address from the stack.

: (len) (len NCB -- HICB)
SWAP OVER LENGTH !

Having defined the two supporting words, we can now go on to define the words that the application
programmer will use to gain access to the NETBIOS session capability. As we have already likened a
session connection to a telephone connection, we use telephone-like words in our interface.

The word PHONE is used to establish a connection. This is similar to making a telephone call
where you give the name of the recipient as a counted string (s). If the call is being made to a group
name, only one member of the group will receive the call. The NETBI0S selects the group member, a
one-to-one connection is made with one of the group members. The particular member is not known and
is non-deterministic.

: PHONE (s NCB --) (cname) 16 -NET ;

The word LISTEN is similar to listening for a telephone call. You give the name of the node you are
waiting to hear from as a counted string (s). However, you will only hear calls from that node, if another
node is attempting to contact this name, the listen command will not register the call. When a call is
detected, a connection (session) is established on both nodes.

There 1s a special name of “*” that will listen for a call from anyone. When a call is detected,
the session (connection) is established and the name of the caller is placed in the CALLNAME field of the
NCB.

: LISTEN (s NCB --) (cname) 17 -NET ;

The word HANGUP is used to disconnect the session. This is similar to someone hanging up the telephone
to break the connection. We use the same convention as is used for telephones in that the caller is
responsible for clearing the connection.

. HANGUP (NCB --) O SWAP 18 -NET ;

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 21

We now have the words that will allow one to set up a connection but we are still unable to
transfer data over this connection. The next two words provide this capability. The connection must be
established prior to any attempt to transmit data.

To transmit data over the connection (to source the data) we use the TX word. This takes a buffer
(buff) of len bytes (the maximum buffer size being 64 KBytes) and transmits it over the connection.
As this is a session connection NETBI10S provides a guarantee that the data will arrive.

: TX (Buff Len NCB --) (len) 20 -NET ;

To sink (receive) the data the RX word is used. We give the system a buffer area (buff) with a maximum
size of len bytes where it can place the data when it is received. When data has been received, the
LENGTH field of the N¢B will hold the actual number of bytes received. If the buffer is not large enough to
hold all the data, the system will buffer the remaining data internally and report an error. Under these
conditions an error code of 6 is placed in the RETCODE field of the NCB. It is the responsibility of the
application programmer to detect and act on this condition by issuing another receive request.

: RX (Buff Len NCB --) (len) 21 -NET ;

The final word in this section 1s CALL-STAT which is used to obtain status information on the connection
(session) associated with the given NCB. It is given a buffer (buff) of len1 bytes into which it will place
the current status. The CALL-STAT word will return the actual number of bytes used (Len2) by the status
information. The status information returned by this word is partly defined, however a large part of the
data is dependent on the NETBI10S implementation.

: CALL-STAT (Buff Lenl NCB -- Len2)
SWAP OVER LENGTH DUP >R ! 52 +NET R> @

2.8.8 Datagram Support

This 18 where we develop the FORTH words that will give the application programmer access
to the “Datagram” communication level provided by the NETB10s. A datagram can be thought of as a
packet of up to 512 bytes on the network. Unlike session communication, there is no built-in protocol
associated with datagrams. The receiving node must be listening for an incoming datagram, otherwise
it will not receive it. The NETBI0S provides no guarantee that the datagram will be delivered.

The first word we define in this section is DTX, the Datagram Transmit function. This will take
an area of memory (buff) of len bytes in length (maximum size being 512 Bytes). This is sent, as a
single unit, to the indicated node (whose name is given as the counted string s).

Notice how this word uses (cname) to copy the destination node name into the CALLNAME field
of the NCB. The NIP is required to disregard the extra 0 that (cname) places on the stack. We use (1en)
to copy the byte length into the LENGTH field of the NCB. We can make the NETBI0S call with the -NET
word.

: DTX (Buff Len s HNCB --)
(cname) NIP (len) 32 -NET

The Datagram Receive function is provided by the word DRX. This i1s given an area of memory to place
the received data (buff) which is a maximum size of Len bytes (maximum buffer size is 512 bytes). This
word will wait for an incoming datagram addressed to the name associated with the NCB. On receiving a
datagram, it will place as much data as it can in the buffer returning the actual number of bytes received

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 22

in the LENGTH field of the NCB. Note that if the received datagram was too large for the receiving buffer,
the buffer is filled, the remaining data is lost, and a return value of 6 is given (in the RETCODE field).
The name of the sending node is placed in the CALLNAME field. See section 2.9.2 for an example of using
datagrams.

: DRX (Buff Len NCB --) (len) 33 -HET ;

2.8.9 Broadcast Support

In this, the final part of the interface, we define the words that provide access to the NETBI10S
“Broadcast” commands. A broadcast can be thought of as sending a datagram to everybody. If you are
not listening for a broadcast, you will miss it. Like the datagram it will not be buffered for you. As with
datagram support, we only need two words to provide broadcast support, one to transmit and one to
receive.

The first of these words 1s BTX, providing the Broadcast Transmit function. This takes the
address of the memory buffer (buff) of len bytes in length (maximum size of 512 bytes). The data is
then transmitted to every node on the system.

: BTX (Buff Len NCB --) (len) 34 -HET ;

The second word required to provide broadcast support is BRX, providing the Broadcast Receive function.
As with DRX, the address of a receive buffer is given (buff) with a maximum length of len (maximum
buffer size is 512 bytes). When the system receives a broadcast message, it will place up to len bytes in
the buffer loosing any additional data. The LENGTH field holds the actual number of bytes received. The
CALLNAME field will hold the name of the sending node. If more than one Broadcast Receive is posted,
they will all receive the same message.

: BRX (Buff Len NCB --) (len) 35 -HET ;

It should be noted that the words (netable), (neterror), pos, FIELD, (post), (net), +NET,
-NET, (name), (cname) and (len) are internal to the interface and should not be used when programming
applications with this package.

2.9 The “Net-Chat” Application

The following is an annotated source listing of the “Net-Chat” example application as described
in Section 2.5.2.

2.9.1 Memory Buffers

The first part of the application is to reserve the memory buffers that are going to be used. This
section not only reserves the memory but also defines words that allow easy access to this memory.

We are going to require five NcBs and buffers. We first reserve the space for the five NCBs (one
outgoing, four incoming). The number of bytes to reserve is calculated by multiplying the number of
bytes required for an NCB (ncb_size) by five. We then initialise this memory to zeros using the ERASE
word.

CREATE ncbs ncb_size 5 * ALLOT ncbs ncb_size 5 * ERASE

Thus the word ncbs will return the start address of a block of memory large enough to hold five NCBs.
We now define a word NCB that take an NcB number and returns the address of the indicated NcB from
our table.

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 23

: NCB (n -- NCB) ncb_size * ncbs + ;

Now we do the same for the data buffers. This time the buffers are 60 bytes long and is given the name
buff, while the accessing word is called BUFF.

CREATE buff 60 5 * ALLOT buff 60 5 * ERASE

: BUFF (n -- buff) 60 * buff + ;

We now define the word name that takes an NCB number and initialises the stack ready for a NETBI0S
call to the Datagram Receive function, placing the corresponding buffer address (buff), the maximum
size of the buffer (60) and the indicated NcB (NCB) on the stack.

: name (n -- buff 60 NCB)
DUP BUFF SWAP NCB 60 SWAP

2.9.2 Listening

In this section we define the “Listening” part of the application. This code will post four
Datagram Recewes to the NETB10s and wait for one of them to be honoured. It will then display the
name of the sender and a one line message.

The first item to define is the actor that is going to execute the code (CHAT-TASK). The actor is
defined now so as to indicate that all the code that follows (upto the CONSTRUCT word) will be performed
by the actor concurrently with the main system.

ACTOR CHAT-TASK

The first word we define in the section is NET-LISTEN which simply posts four Datagram Receive functions
which will operate in unison. It should be noted that N¢B 0 has been reserved for outgoing messages.

: NET-LISTEN
51 DO
I name DRX
LOOP

When one of these Datagram Receive functions has been honoured, the system will execute the NET-DISP
word. This will scan through the NCBs to discover which of them has been honoured. It will then display
the name of the sender (taking it from the CALLNAME field) and the associated message. Finally it re-posts
the Datagram Receive command.

: NET-DISP
51 DO \ Scan through the incoming NCBs
I NCB COMPLETE \ Has the command been honoured 7
IF
I NCB CR
CALLNAME 16 O DO \ Display the CALLNAME filed
DUP C@ ?DUP 0= IF LEAVE THEN EMIT 1+
LOOP DROP

A \ Display a name separator
I BUFF I NCB LENGTH @ TYPE \ Display the message
I name DRX \ Re-post the DRX
THEN
LOOP

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 24

The output from NET-DISP will be displayed in a small window at the top of the screen. The following
line defines the window to start at the top left of the screen, being 78 characters wide and 5 lines high.
The WITH-BORDER indicates that the window will have a line boarder displayed around it. Finally the
window will be called NET-WIN.

1 1 78 5 WITH-BORDER CREATE-WINDOW WET-WIN
The last word to be defined in this section is NET-GO. This is the word that the CHAT-TASK will be asked to
perform (by the GO word). Tt initialises the window and posts the initial four Datagram Receive requests.

It then enters into an infinite loop waiting for one (or more) of the requests to be honoured when it will
call the NET-DISP word to display the message and re-post the receive request.

: NET-GO
NET-WIN <WIN \ Open the window.
*WCLEAR \ Clear it
*TITLE" Net Chat " \ Give it a title
NET-LISTEN \ Post initial four DRX commands
BEGIN
STOP \ Wait for one to be honoured
NET-DISP \ Display the message & re-post
AGAIN
WIN>

The final act in this section is to indicate the completion of the code that is to be executed by the
CHAT-TASK actor. This also completes the definition of the actor. Any words defined from this point on
would not be accessible to the CHAT-TASK actor.

CHAT-TASK CONSTRUCT

2.9.3 Sending

In this section we define the “Sending” part of the application. In reality this consists of one
definition. The word CHAT will ask the user to type in a one line message. It will then send the message
as a datagram to the group name “NET-CHAT”, thus any node with a Datagram Receive posted on the
group name NET-CHAT will receive a copy of the message (including the sending node).

Firstly, the word locates the outgoing message buffer (buffer 0). Tt then erases the buffer making
sure no other message is stored there. It now displays a message asking the user to input the message
they wish to transmit. The message is read directly into the buffer with a maximum of 60 characters in
length:

78 Characters in the display line
— 16 Maximum characters in user name
— 2 Name/Message separator (“: ”)
60 Total allowable size of message

The number of characters actually typed is taken as the size of the buffer. The buffer is sent
to the group name NET-CHAT via the outgoing NcB (NcB 0). Finally, the word waits for the Datagram
Transmit function to complete before returning to the user.

: CHAT
0 BUFF
DUP 60 ERASE
CR ." Message:
DUP 60 EXPECT

SPAN @ ' NET-CHAT" O NCB DTX
STOP

Find outgoing buffer

Erase buffer

Ask for the message

Read in the message

Send the message

Wait for NetBios to complete

P g

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETBI10S 25

2.9.4 Initialisation

In this part of the application, we provide the initilisation of the system. The word GO initialises
the system for use with the “Net-Chat” application as outlined in section 2.5.2.

The first part of the initialisation is to define a word that is going to become the network error
handler for the application. This is a very simple word that simply ignores any errors. This definition
is required so that the INIT-CHAT word can examine the return code and take appropriate action. (The
default action will cause the system to abort on an error.)

: NO-ERROR DROP ;

The next part of the initialisation process is coded into the word INIT-CHAT. This initialises the network
handling side of the system. Firstly, it replaces the standard error handling with our error handling
system (NO-ERROR). It will then ask the user to type in a unique name that it will use to identify the user
to the other uses of the system. It attempts to add the name to the network (Add Name). If an error
occurs a message is displayed and the user is asked to supply an alternative name.

When the individual name has been established (on the outgoing NcB, NCB 0), the error handler
is reset back to the default. The NO-ERROR handler is only used to allow the word to extract the error
code and ask for another name if necessary.

The group name NET-CHAT is added to the network (on NcB 1). The information placed in the
NCB by the Add Group Name function is copied to the remaining incoming NCBs (2, 3 and 4).

: INIT-CHAT
NETERROR @ \ Save the default error handler
[’] NO-ERROR ’HNETERROR ! \ Reset the error handler
BEGIN
CR ." Enter your name: " Ask for a name

O BUFF DUP 1+ 16 EXPECT
SPAN @ SWAP C!

O BUFF O NCB ADD-NAME

O NCB NERROR

Read the name (max 16 chars)
Make buff a counted string
Add name to Network

P

WHILE \ While error in Add-Name

CR ." Sorry, someone else is already using that name, try another."
REPEAT \ Repeat input sequence
’NETERROR ! \ Reset error handler to default

" NET-CHAT" 1 NCB ADD-GROUP \ Add the group name

1 NCB DUP DUP

2 NCB COPYNCB \ Copy the NCB data to HNCB 2
3 NCB COPYNCB \ >’ HCB 3

4 NCB COPYNCB \ ’’ NCB 4

The window for use by the OPERATOR actor is now defined to be 15 lines of 78 characters starting at line 8,
complete with a line boarder.

1 8 78 15 WITH-BORDER CREATE-WINDOW OP-WIN

Finally, the word GO is defined. This is the word that the user will type to initialise the “Net-Chat”
application.

The first action of GO is to call the INIT-CHAT word. Thus it asks for an individual name and
initialise the NoBs. GO will then clear the screen (CLEAR) and turn the hardware cursor off (HWC-OFF)
ready for the windowing environment. It will then redirect the OPERATOR output to the OP-WIN window
(<WIN). Finally, the actor CHAT-TASK is sent the message (SEND") to initialise its window and listen for
and display incoming messages (NET-GO).

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 26

: GO
INIT-CHAT \ Initialise the Network
CLEAR \ Clear the screen
HWC-0FF \ Turn the hardware cursor off
OP-WIN <WIN \ Redirect output to the OP-WIN window
*WCLEAR \ Clear the window
*TITLE" Operator " \ Title the window
CHAT-TASK SEND" NET-GO " \ Set the CHAT-TASK listening

2.9.5 Close Down

In this, the final section of the application, we provide the code that will close down the appli-
cation. All applications should provide a graceful close down, especially when they are using the services
of some kind of server such as the NETBI10S.

There are a number of things we need to do to close down: stop the CHAT-TASK actor; remove the
unique name from the system; cancel any outstanding commands; resign from the NET-CHAT group; tidy
up the screen. The order in which these events occur is quite important. All of this can be accomplished
in the one FORTH word, CLOSE-CHAT. This i1s the word that the user will type when they wish to close or
leave “Net-Chat”.

Our first task is to force the CHAT-TASK actor to stop processing. This we do by forcing it
to accept a new task (via the MUST SEND" operation). We ask CHAT-TASK to close its window (WIN>)
and then to stop processing until further notice (HALT). Having stopped CHAT-TASK from receiving any
messages, we are now able to alter the status of the network. We first remove the unique name from
the name table (REMOVE-NAME). This provides us with a free NCB which we use to cancel the Datagram
Receive requests that CHAT-TASK would have posted (NET-CANCEL). Notice how any task can cancel these
requests as the NETB10S is unaware of our tasking mechanism, thus does not consider a NETBI0S request
to be owned by any particular task.

We are no longer able to send a message as we do not have a unique name. We are no longer
able to see messages as CHAT-TASK is not running. We are no longer listening for messages sent to the
NET-CHAT group as we have just cancelled all such requests. Thus we are now in a position to be able to
resign our membership of the NET-CHAT group (REMOVE-NAME). Finally, we close the operations window
(WIN>) and re-establish the cursor (HWC-ON).

: CLOSE-CHAT
CHAT-TASK MUST SEND" WIN> HALT" \ Close NET-WIN and stop the task
O NCB REMOVE-NAME \ Remove the outgoing unique name

1 NCB O NCB HNET-CANCEL \ Cancel the DRX commands
2 NCB O NCB NET-CANCEL
3 NCB O NCB NET-CANCEL
4 NCB O NCB NET-CANCEL

1 NCB REMOVE-NAME \ Remove the group name
WIN> \ Close OP-WIN
HWC-0N \ Turn hardware cursor on

If the user wanted to restart the application, he would simply type GO and he would be back in the
application.

Practical and Theoretical Aspects of Forth Software Development: Using IBM’s NETB10S 27

2.10 References

Glass, B. (1989, January). Understanding NETBI10s. Byte, 301-306.
IeM Corporation (1987, April). NETBI0s Application Development Guide. IBM Corporation.
Nine Tiles (1988, June). SimpleNetBIOS Reference Guide. Cambridge, UK: Nine Tiles.

Schwaderer, W. D. (1988, August). C Programmer’s Guide to NetBIOS. Indianapolis: Howard W.
Sams & Company.

