
Systems Architecture

CISC / RISC

Complex / Reduced

Instruction Set Computers

CISC / RISC – p. 1/12



Instruction Usage

Instruction Group Average Usage

1 Data Movement 45.28%

2 Flow Control 28.73%

3 Arithmetic 10.75%

4 Compare 5.92%

5 Logical 3.91%

6 Shift 2.93%

7 Bit Manipulation 2.04%

8 I/O & Others 0.44%

CISC / RISC – p. 2/12



Programming Observations

• 56% of constants ±15 (5 bits)

• 98% of constants ±511 (10 bits)

• 95% of subroutines require less

than 6 parameters (arguments)

Instruction Usage and Programming Observations

lead to a smaller, less complex, instruction set

CISC / RISC – p. 3/12



RISC / CISC Comparison (1/2)

Characteristics RISC CISC

1 On chip registers Many (>30) Few (2–16)

2 Registers per Three Two
instruction ADD R1, R2, R3 ADD R1, R2

[R1]← [R2] + [R3] [R2]← [R1] + [R2]

3 Parameter Efficient on-chip Inefficient off-chip
Passing registers memory

4 Flow Control Optimised Not-Optimised
Instructions 20–30% of program

CISC / RISC – p. 4/12



RISC / CISC Comparison (2/2)

Characteristics RISC CISC

5 Operations Per One Instruction One microcode
Clock Cycle (RTL) Instruction

6 Less used Not Implemented Full Implementation
Instructions

7 Microcode Not Implemented All Instructions

8 Instruction Few (4 or 5) Many (18)
format fixed length variable lengths

(32-bit) (8–80 bits)

CISC / RISC – p. 5/12



Pipelining

• Machine cycle:
1 Fetch instruction into IR
2 Decode op-code field
3 Fetch Operands
4 Execute operation
5 Store Operands

• Different part of circuit for each step

• Run all steps in parallel
(Fetch and decode next instruction at the same time
as fetching the operands for current instruction. . . )

• An “air bubble” may occur
(The pipeline is interrupted and a ‘do nothing’ step
is introduced)

CISC / RISC – p. 6/12



Pipeline “Bubble”

OF E OSIF

OF E MemIF OS

OFIF

IF

E OS

OF E OS

OF E OSIF

i

i + 1

i + 2

i + 3

i + 4

Bubble

CISC / RISC – p. 7/12



Bubbles: Branch Delay

Pipeline has already read the next instruction before reaching
the execute phase of the branch instruction, thus we have to
throw away the next instruction, causing a pipeline bubble.

• Delay Jump (aka Delay Slot )
Always execute the instruction after the Branch

• Branch Prediction
Cache both next and target instructions, so next instruction
to be executed is on-chip and ready to load into the pipeline,
loosing one clock-cycle, but splitting the cache.

• Conditional Execution
Remove the need for most branch instructions by allowing
instructions to be executed conditionally, wasting one clock-
cycle for each non-executed instruction.

CISC / RISC – p. 8/12



Bubbles: Dependency Delay

Next instruction relies on result of the current instruction

Line 1: x = a + b
Line 2: y = x + 2

Line 2 must wait for the Operand Store phase of line 1 to com-
plete before it can perform it’s Operand Fetch phase, causing
a bubble, otherwise x will have the wrong value.

• Internal forwarding (aka Instruction Scheduling )
Place another non-dependent instruction in between the
two dependent instructions.

• Load Delay
Allow the CPU to delay by one clock-cycle when a source
register for the current instruction is the same as a destina-
tion register for the previous instruction, thus skipping over
the bubble (allowing the bubble to occur).

CISC / RISC – p. 9/12



Bubbles: Memory Access

There are over 20 CPU clock-cycles per memory clock-cycle.
When accessing memory the CPU must slow down to the
same cycle rate as the memory, causing a very large bubble.

• Buffer Memory Access (aka Cache )
Use on-chip memory (cache) and a Memory Management
Unit (MMU) to access off-chip memory while the CPU is
executing at full speed.

MMU attempts to predict memory access

CPU will have to slow down when accessing memory not in
cache (a cache miss).

• Produce program code in such a way as to reduce the num-
ber of external memory accesses required.

CISC / RISC – p. 10/12



Cache Memory

• Frequently accessed memory (main or disk)
is copied into cache memory

• Speeds up memory access
Memory taken from on-chip cache (fast)
rather than external off-chip memory (slow)

• Update Policy
⇒ Write Delayed – Volatile

Memory writes are stored in the cache
Periodically write cache to external memory

⇒ Write Through – Non-Volatile
Write modifies external memory and cache
Slow but always up to date

CISC / RISC – p. 11/12



The Post RISC era

Intel IA32 – CISC with 2 stage pipeline (Pentium)
IA64 – RISC was Hewlett-Packard Pyramid
XScale – RISC was ARM’s StrongARM2

AMD Athlon – RISC based Pentium
Opteron – 64-Bit RISC with Athlon subset

Motorola
PowerPC – RISC (PowerPC / PowerMac / . . . )
DragonBall – CISC (Early Palm’s and Mobile ’Phones)

ARM Advanced RISC Machines Ltd.
Has a nine stage pipeline
Low power, used in embedded systems
Palm Computing, G2.5 and G3 Mobile ’Phones, etc

SPARC Scalable Processor ARChitecture
A workstation level RISC processor
Developed by Sun, Texas Instruments and Fujitsu

CISC / RISC – p. 12/12


	Systems Architecture
	Instruction Usage
	Programming Observations
	RISC / CISC Comparison (1/2)
	RISC / CISC Comparison (2/2)
	Pipelining
	Pipeline ``Bubble''
	Bubbles: Branch Delay
	Bubbles: Dependency Delay
	Bubbles: Memory Access
	Cache Memory
	The Post RISC era

