
Systems Architecture

The Stack

and Subroutines
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The Subroutine

• Allow re-use of code

• Write (and debug) code once, use it many times

• A subroutine is called

• Subroutine will return on completion

• Defer writing actual code until later

• Helps with readability and maintenance

• We can nest subroutines:
subroutine calls other subroutines

• May be a procedure: does not return a value

• May be a function: does return a value
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Operation of The Subroutine

• Branch to Subroutine (Branch and Link)
BL〈cc〉 label

• Link Register: LR (R14)
Holds address of instruction after the BL instruction

• Return from Subroutine
MOV〈cc〉 PC, LR
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Operation of The Subroutine

• Branch to Subroutine (Branch and Link)
BL〈cc〉 label 〈cc〉: LR ← PC + 4

〈cc〉: PC ← PC + IR(offset)

• Link Register: LR (R14)
Holds address of instruction after the BL instruction

• Return from Subroutine
MOV〈cc〉 PC, LR 〈cc〉: PC ← LR
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Example Subroutines

; Read line from keyboard into string at R10, uses R0 and R13

GetStr MOV R13, LR ; Save Return Address
BLAL GetChar ; Read keyboard into R0
CMP R0, #13 ; Is it 〈return〉 key ?
BEQ GetStr1 ; Yes⇒ Exit Subroutine
STRB R0, [R10], #1 ; No⇒ Save char in string
BAL GetStr ; Get next character

GetStr1 EOR R0, R0, R0 ; Clear R0
STRB R0, [R10] ; Add terminating zero byte
MOV PC, R13 ; Return from GetStr

; Read char from keyboard into R0

GetChar SWI &4 ; Reach char into R0
MOV PC, LR ; Return from GetChar
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The Stack

• Stack used to ‘remember’ values

• Provides temporary (local) storage

• Allows for subroutines (functions)

• R13 points to current Top Of Stack (TOS)
Also known as the Stack Pointer (SP)

• Stack is a LIFO (last-in-first-out) device
Most recent value pushed on is first popped off
Stack grows ‘downwards’ in memory

• Each mode has it’s own stack pointer:
R13_fiq, R13_svc, R13_abt, R13_undef, . . .
R13 or SP refer to current mode
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Operation of The Stack

1 Stack Empty

← SP
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Operation of The Stack

1 Stack Empty
2 Push A

A
← SP
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Operation of The Stack

1 Stack Empty
2 Push A
3 Push B

A
B

← SP
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Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C A

B
C

← SP
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Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D

A
B
C
D

← SP
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Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop

A
B
C

← SP
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Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E

A
B
C
E

← SP
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Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E
8 Pop

A
B
C

← SP
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Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E
8 Pop
9 Pop

A
B

← SP
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Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E
8 Pop
9 Pop

10 Pop

A
← SP
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Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E
8 Pop
9 Pop

10 Pop
11 Pop

← SP
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Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E
8 Pop
9 Pop

10 Pop
11 Pop

Stack Empty

← SP
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Stack as Temporary Storage

• Push: Save register on the stack
STR〈cc〉 Rs, [SP], #-4

• Pop: Recover register from stack
LDR〈cc〉 Rd, [SP, #4]!
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Stack as Temporary Storage

• Push: Save register on the stack
STR〈cc〉 Rs, [SP], #-4 〈cc〉: MBR ← Rs

〈cc〉: MAR ← SP
〈cc〉: SP ← SP - 4
〈cc〉: M(MAR) ← MBR

• Pop: Recover register from stack
LDR〈cc〉 Rd, [SP, #4]!
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Stack as Temporary Storage

• Push: Save register on the stack
STR〈cc〉 Rs, [SP], #-4 〈cc〉: MBR ← Rs

〈cc〉: MAR ← SP
〈cc〉: SP ← SP - 4
〈cc〉: M(MAR) ← MBR

• Pop: Recover register from stack
LDR〈cc〉 Rd, [SP, #4]! 〈cc〉: SP ← SP + 4

〈cc〉: MAR ← SP
〈cc〉: MBR ← M(MAR)
〈cc〉: Rd ← MBR
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Push/Pop a Set of Register

• Push: Save a set of registers on the stack
STM〈cc〉〈mode〉 SP!, { 〈Register List〉 }

• Pop: Recover the set of registers
LDM〈cc〉〈mode〉 SP!, { 〈Register List〉 }

• 〈mode〉 can be one of:
IB: Increment Before
IA: Increment After

DB: Decrement Before
DA: Decrement After

• 〈Register List〉
A list of the registers to load/store
E.g., R0-R7, R10
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Nested Subroutines

• Use Stack to store Return Address (Link Register)

• Save all register used in the subroutine
just in case the caller is using them

• Must pop off all values pushed onto stack !

• Pass parameters (arguments) into a subroutine

⇒ Three types of variable passing
by value / reference / name

⇒ Three methods of passing variables
In registers / on Stack / in parameter block

• Return a value from the subroutine
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