Systems Architecture

The Stack

and Subroutines

""""'The Subroutine

Allow re-use of code

Write (and debug) code once, use it many times
A subroutine is called

Subroutine will return on completion

Defer writing actual code until later

Helps with readability and maintenance

We can nest subroutines:
subroutine calls other subroutines

May be a procedure: does not return a value

May be a function: does return a value

The Stack — p. 2/9

-Operation of The Subroutine

e Branch to Subroutine (Branch and Link)
BL(cc) | abel

e Link Register: LR (R14)
Holds address of instruction after the BL instruction

e Return from Subroutine
MOV(cc) PC, LR

The Stack — p. 3/9

-Operation of The Subroutine

Branch to Subroutine (Branch and Link)
BL(cc) || abel (cc): LR < PC+4
(cc). PC «— PC + IR(offset)

Link Register: LR (R14)
Holds address of instruction after the BL instruction

Return from Subroutine
MOV(cc) PC, LR (cc): PC — LR

The Stack — p. 3/9

Example Subroutines

; Read line from keyboard into string at R10, uses RO and R13

Get Str MOV R13, LR : Save Return Address
BLAL Get Char ; Read keyboard into RO
CMP RO, #13 , Is it (return) key ?
BEQ CGetStril . Yes = Exit Subroutine
STRB RO, [R10], #1 ;No = Save char in string
BAL CGetStr . Get next character

GetStrl EOR RO, RO, RO . Clear RO
STRB RO, [R10] , Add terminating zero byte
MOV PC, RI13 : Return from Get St r

; Read char from keyboard into RO

Get Char SW &4 : Reach char into RO

MOV PC LR : Return from Get Char

The Stack — p. 4/9

The Stack

Stack used to ‘remember’ values
Provides temporary (local) storage
Allows for subroutines (functions)

R13 points to current Top Of Stack (TOS)
Also known as the Stack Pointer (SP)

Stack is a LIFO (last-in-first-out) device
Most recent value pushed on is first popped off
Stack grows ‘downwards’ in memory

Each mode has it's own stack pointer:

R13 fiq, RL3 svc, R13 abt, R13 undef, ...

R13 or SP refer to current mode

The Stack — p. 5/9

Operation of The Stack

1 Stack Empty

— SP

The Stack — p. 6/9

1 Stack Empty
2 Push A

— SP

The Stack — p. 6/9

Operation of The Stack

1 Stack Empty
2 Push A
3 PushB

o >

— SP

The Stack — p. 6/9

Operation of The Stack

Stack Empty

Pus
Pus
Pus

N A
N B

n C

O m >

— SP

The Stack — p. 6/9

O N WDN -

Operation of The Stack

Stack Empty

Pus
Pus
Pus
Pus

N A
N B
n C

n D

O 0O mw >

— SP

The Stack — p. 6/9

O O~ WDN -

Operation of The Stack

Stack Empty

Pus
Pus
Pus
Pus
Pop

N A
N B
n C

n D

O m >

— SP

The Stack — p. 6/9

Operation of The Stack

Stack Empty
Push A
Push B
Push C
Pusnh D

Pop

Push E

~NoUONWNR
m O @@ >

— SP

The Stack — p. 6/9

'Operation of The Stack

Stack Empty
Push A
Push B
Push C
Push D

Pop

Push E — SP
Pop

O m >

cO NO Ol A~ WN -

The Stack — p. 6/9

© 00 ~NO O A~ WD -

'Operation of The Stack

Stack Empty

Pus
Pus
Pus
Pus
Pop

N A
N B
n C

n D

Push E

Pop
Pop

o >

— SP

The Stack — p. 6/9

© 00 ~NO O A~ WD -

=
o

Stack Empty

Pus
Pus
Pus
Pus
Pop

N A
N B
n C

n D

Push E

Pop
Pop
Pop

— SP

The Stack — p. 6/9

© 00 ~NO O A~ WD -

=
= O

'Operation of The Stack

Stack Empty
Pus
Pus
Pus
Pus
Pop
Push E

Po
Po
Po
Po

D

O O 0O

N A
N B
n C

n D

— SP

The Stack — p. 6/9

© 00 ~NO O A~ WD -

=
= O

'Operation of The Stack

Stack Empty

Pus
Pus
Pus
Pus
Pop

N A
N B
n C

n D

Push E

Pop
Pop
Pop
Pop

— SP

Stack Empty

The Stack — p. 6/9

-Stack as Temporary Storage

e Push: Save register on the stack
STR(cc) Rs, [SP], #-4

e Pop: Recover register from stack
LDR(cc) Rd, [SP, #4]!

The Stack — p. 7/9

Push: Save register on the stack
STR(cc) Rs, [SP], #-4 (CC):

. SP — SP-4

Pop: Recover register from stack
LDR(cc) Rd, [SP, #4]!

The Stack — p. 7/9

Push: Save register on the stack
STR(cc) Rs, [SP], #-4 (CC):
. MAR
. SP

: M(MAR) «— MBR

Pop: Recover register from stack
LDR(cc) Rd, [SP, #4]! (cc

[=)
O

O
N~ T NN S~

(C
(C

(@)

MBR

SP

: MAR
: MBR
' Rd

— Rs

— SP
—SP-4

— SP+4
— SP

— M(MAR)
— MBR

The Stack — p. 7/9

%

“Push/Po a Set of Reqgister
/ l P 9

e Push: Save a set of registers on the stack
STMcc)(node) SP!', { (Register List) }

e Pop: Recover the set of registers
LDMcc)(nmode) SP!', { (Register List) }

e (mode) can be one of:
IB: Increment Before
JA: Increment After
DB: Decrement Before
DA: Decrement After

e (Register List)
A list of the registers to load/store
E.g., RO-R7, R10

The Stack — p. 8/9

"""INested Subroutines

Use Stack to store Return Address (Link Register)

Save all register used in the subroutine
just in case the caller is using them

Must pop off all values pushed onto stack !
Pass parameters (arguments) into a subroutine

= Three types of variable passing
by value / reference / name

= Three methods of passing variables
In registers / on Stack / in parameter block

Return a value from the subroutine

The Stack — p. 9/9

	Systems Architecture
	The Subroutine
	Operation of The Subroutine
	Operation of The Subroutine

	Example Subroutines
	The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack

	Stack as Temporary Storage
	Stack as Temporary Storage
	Stack as Temporary Storage

	Push/Pop a Set of Register
	Nested Subroutines

