
Systems Architecture

The Stack

and Subroutines

The Stack – p. 1/9



The Subroutine

• Allow re-use of code

• Write (and debug) code once, use it many times

• A subroutine is called

• Subroutine will return on completion

• Defer writing actual code until later

• Helps with readability and maintenance

• We can nest subroutines:
subroutine calls other subroutines

• May be a procedure: does not return a value

• May be a function: does return a value
The Stack – p. 2/9



Operation of The Subroutine

• Branch to Subroutine (Branch and Link)
BL〈cc〉 label

• Link Register: LR (R14)
Holds address of instruction after the BL instruction

• Return from Subroutine
MOV〈cc〉 PC, LR

The Stack – p. 3/9



Operation of The Subroutine

• Branch to Subroutine (Branch and Link)
BL〈cc〉 label 〈cc〉: LR ← PC + 4

〈cc〉: PC ← PC + IR(offset)

• Link Register: LR (R14)
Holds address of instruction after the BL instruction

• Return from Subroutine
MOV〈cc〉 PC, LR 〈cc〉: PC ← LR

The Stack – p. 3/9



Example Subroutines

; Read line from keyboard into string at R10, uses R0 and R13

GetStr MOV R13, LR ; Save Return Address
BLAL GetChar ; Read keyboard into R0
CMP R0, #13 ; Is it 〈return〉 key ?
BEQ GetStr1 ; Yes⇒ Exit Subroutine
STRB R0, [R10], #1 ; No⇒ Save char in string
BAL GetStr ; Get next character

GetStr1 EOR R0, R0, R0 ; Clear R0
STRB R0, [R10] ; Add terminating zero byte
MOV PC, R13 ; Return from GetStr

; Read char from keyboard into R0

GetChar SWI &4 ; Reach char into R0
MOV PC, LR ; Return from GetChar

The Stack – p. 4/9



The Stack

• Stack used to ‘remember’ values

• Provides temporary (local) storage

• Allows for subroutines (functions)

• R13 points to current Top Of Stack (TOS)
Also known as the Stack Pointer (SP)

• Stack is a LIFO (last-in-first-out) device
Most recent value pushed on is first popped off
Stack grows ‘downwards’ in memory

• Each mode has it’s own stack pointer:
R13_fiq, R13_svc, R13_abt, R13_undef, . . .
R13 or SP refer to current mode

The Stack – p. 5/9



Operation of The Stack

1 Stack Empty

← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A

A
← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A
3 Push B

A
B

← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C A

B
C

← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D

A
B
C
D

← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop

A
B
C

← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E

A
B
C
E

← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E
8 Pop

A
B
C

← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E
8 Pop
9 Pop

A
B

← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E
8 Pop
9 Pop

10 Pop

A
← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E
8 Pop
9 Pop

10 Pop
11 Pop

← SP

The Stack – p. 6/9



Operation of The Stack

1 Stack Empty
2 Push A
3 Push B
4 Push C
5 Push D
6 Pop
7 Push E
8 Pop
9 Pop

10 Pop
11 Pop

Stack Empty

← SP

The Stack – p. 6/9



Stack as Temporary Storage

• Push: Save register on the stack
STR〈cc〉 Rs, [SP], #-4

• Pop: Recover register from stack
LDR〈cc〉 Rd, [SP, #4]!

The Stack – p. 7/9



Stack as Temporary Storage

• Push: Save register on the stack
STR〈cc〉 Rs, [SP], #-4 〈cc〉: MBR ← Rs

〈cc〉: MAR ← SP
〈cc〉: SP ← SP - 4
〈cc〉: M(MAR) ← MBR

• Pop: Recover register from stack
LDR〈cc〉 Rd, [SP, #4]!

The Stack – p. 7/9



Stack as Temporary Storage

• Push: Save register on the stack
STR〈cc〉 Rs, [SP], #-4 〈cc〉: MBR ← Rs

〈cc〉: MAR ← SP
〈cc〉: SP ← SP - 4
〈cc〉: M(MAR) ← MBR

• Pop: Recover register from stack
LDR〈cc〉 Rd, [SP, #4]! 〈cc〉: SP ← SP + 4

〈cc〉: MAR ← SP
〈cc〉: MBR ← M(MAR)
〈cc〉: Rd ← MBR

The Stack – p. 7/9



Push/Pop a Set of Register

• Push: Save a set of registers on the stack
STM〈cc〉〈mode〉 SP!, { 〈Register List〉 }

• Pop: Recover the set of registers
LDM〈cc〉〈mode〉 SP!, { 〈Register List〉 }

• 〈mode〉 can be one of:
IB: Increment Before
IA: Increment After

DB: Decrement Before
DA: Decrement After

• 〈Register List〉
A list of the registers to load/store
E.g., R0-R7, R10

The Stack – p. 8/9



Nested Subroutines

• Use Stack to store Return Address (Link Register)

• Save all register used in the subroutine
just in case the caller is using them

• Must pop off all values pushed onto stack !

• Pass parameters (arguments) into a subroutine

⇒ Three types of variable passing
by value / reference / name

⇒ Three methods of passing variables
In registers / on Stack / in parameter block

• Return a value from the subroutine

The Stack – p. 9/9


	Systems Architecture
	The Subroutine
	Operation of The Subroutine
	Operation of The Subroutine

	Example Subroutines
	The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack
	Operation of The Stack

	Stack as Temporary Storage
	Stack as Temporary Storage
	Stack as Temporary Storage

	Push/Pop a Set of Register
	Nested Subroutines

