..-"""Systems Architecture

ARM Assembler

Strings

Characters or Strings

A string is a sequence of characters

ASCIlI — 7-bit (American) character codes
One byte per character (char)

Unicode — International character code
Two bytes per (wide) character (wchar)

Unicode32 — Extended version of Unicode
Four bytes per (wide) character (wchar)

You need to know which type you are using
strl en() — Length of ASCII string
wcsl en() — Length of Unicode string

“_Fixed Length / Terminated Strings
iy ’ X

e Fixed Length
String is always n characters
String Is truncated if too long
String Is padded out if too short

e Terminated
Special character to mark end of string
Normally a NUL (0x00) is used

e char nane[10]
Fixed Length or Terminated ?

Terminated Iif string is short (under 10 chars)
Truncated If string iIs long (over 10 chars)
= Be careful of buffer overrun

-Counted Strings

First byte (or halfword) is a count which
Indicates number of characters in string

struct counted string s {
lnt count;
char string[];

'

Used by Pascal, ADA, Basic, Fortran, ...

Strings — p. 4/16

%

“Program: strlencr.s
/[&

1 ; Find the length of a CR terminated string

2

5 CR EQU 0x0D

6
10 Main
11 LDR RO, =Datal ; Load the address of the lookup table
12 EOR R1,R1,R1 ; Clear R1 to store count
13 Loop
14 LDRB R2, [RO], #1 ; Load the first byte into R2
15 CMP R2,#CR ; Is it the terminator ?
16 BEQ Done ; Yes => Stop loop
17 ADD R1, R1, #1 : No => Increment count
18 BAL Loop ; Read next char
19
24 AREA Datal, DATA

27 DCB "Hello, World", CR

Strings — p. 5/16

¥

"-Program: strlencr.s
iy 4

1 ; Find the length of a CR terminated string

2

5 CR EQU 0x0D

6
10 Main
11 LDR RO, =Datal ; Load the address of the lookup table
12 EOR R1,R1,R1 ; Clear R1 to store count
13 Loop
14 LDRB R2, [RO], #1 ; Load the first byte into R2
15 CMP R2,#CR ; Is it the terminator ?
16 BEQ Done ; Yes => Stop loop
17 ADD R1, R1, #1 : No => Increment count
18 BAL Loop ; Read next char
19
24 AREA Datal, DATA

27 DCB "Hello, World", CR
EQU Equate a label CRto Ox0D (13), the string terminator

Strings — p. 5/16

¥

"-Program: strlencr.s
iy 4

1 ; Find the length of a CR terminated string
2
5 CR EQU 0x0D
6
10 Main
11 LDR RO, =Datal ; Load the address of the lookup table
12 EOR R1,R1,R1 ; Clear R1 to store count
13 Loop
14 LDRB R2, [RO], #1 ; Load the first byte into R2
15 CMP R2,#CR ; Is it the terminator ?
16 BEQ Done ; Yes => Stop loop
17 ADD R1, R1, #1 : No => Increment count
18 BAL Loop ; Read next char
19
24 AREA Datal, DATA
27 DCB "Hello, World", CR
CMP Compare the character to the terminator (CR)

Easier to read than: CMP R2, 0xO0D

Strings — p. 5/16

¥

"-Program: strlencr.s
iy 4

1 ; Find the length of a CR terminated string

2

5 CR EQU 0x0D

6
10 Main
11 LDR RO, =Datal ; Load the address of the lookup table
12 EOR R1,R1,R1 ; Clear R1 to store count
13 Loop
14 LDRB R2, [RO], #1 ; Load the first byte into R2
15 CMP R2,#CR ; Is it the terminator ?
16 BEQ Done ; Yes => Stop loop
17 ADD R1, R1, #1 : No => Increment count
18 BAL Loop ; Read next char
19
24 AREA Datal, DATA
27 DCB "Hello, World", CR

DCB Define a string of characters

Strings — p. 5/16

--""Program: strlencr.s

; Find the length of a CR terminated string

CR

Main

Loop

EQU 0Ox0D
LDR RO, =Datal ; Load the address of the lookup table
EOR R1,R1,R1 ; Clear R1 to store count

LDRB R2, [RO], #1 ; Load the first byte into R2
CMP R2,#CR ; Is it the terminator ?

BEQ Done , Yes => Stop loop
ADD R1, R1, #1 : No => Increment count
BAL Loop ; Read next char

AREA Datal, DATA
DCB "Hello, World", CR

Using conditional execution we could write:
ADDNE R1, R1, #1
BNE Loop

Strings — p. 5/16

“Program: strlen.s
iy 4

; FIind the length of a null terminated string

Main
LDR RO, =Datal , Load the address of the lookup table
MOV R1, #1 ; Start count at -1
Loop
ADD R1, R1, #1 ; Increment count
LDRB R2,[R0O],#1 ; Load the first byte into R2
CMP R2,#0 , Is it the terminator ?
BNE Loop ; No => Next char

STR R1, CharCount ; Store result
SWI &11

AREA Datal, DATA
DCB "Hello, World", O

Strings — p. 6/16

'/ =Program: strlen.s
UL

1 ; Find the length of a null terminated string
2
/7 Main
8 LDR RO, =Datal , Load the address of the lookup table
9 MOV R1, #-1 , Start count at -1
10 Loop
11 ADD R1, R1, #1 ; Increment count
12 LDRB R2,[R0O],#1 ; Load the first byte into R2
13 CMP R2,#0 , Is it the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Datal, DATA
22 DCB "Hello, World", O

MOV Initialise R1 to -1 to counter the first iIncrement

Strings — p. 6/16

%

“Program: strlen.s
e 4

1 ; Find the length of a null terminated string
2
/7 Main
8 LDR RO, =Datal , Load the address of the lookup table
9 MOV R1, #1 , Start count at -1
10 Loop
11 ADD R1, R1, #1 ; Increment count
12 LDRB R2,[RO],#1 ; Load the first byte into R2
13 CMP R2,#0 , Is it the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Datal, DATA
22 DCB "Hello, World", O

LDRB Increment pointer (RO)

Strings — p. 6/16

'/ =Program: strlen.s
UL

; FIind the length of a null terminated string

Main

Loop

LDR RO, =Datal , Load the address of the lookup table
MOV R1, #1 ; Start count at -1

ADD R1, R1, #1 ; Increment count

LDRB R2,[RO],#1 ; Load the first byte into R2

CMP R2,#0 ; Is it the terminator ?

BNE Loop ; No => Next char

STR R1, CharCount ; Store result
SWI &11

AREA Datal, DATA
DCB "Hello, World", O

We must check for zero. as LDRB can not set the flags

Strings — p. 6/16

Program: strlen.s (Revised)

; Find the length of a null terminated string

Main

Loop

LDR RO, =Datal ; Load the address of the lookup table
MOV R1, #0 , Set strlen to zero

LDRB RZ2,[RO, R1l] ; Read n-th byte

ADD R1, R1, #1 ; Increment strlen count

TEQ R2, #0 ; Is it the terminator ?

BNE Loop ; No => Next char

STR R1, CharCount ; Store result
SWI &11

AREA Datal, DATA
DCB "Hello, World", O

Strings — p. 7/16

“Pro ram: strlen.s (Revised
e A ()

; Find the length of a null terminated string

Main

Loop

LDR RO, =Datal ; Load the address of the lookup table
MOV R1, #0 , Set strlen to zero

LDRB RZ2,[RO, R1l] ; Read n-th byte

ADD R1, R1, #1 ; Increment strlen count

TEQ R2, #0 . Is 1t the terminator ?

BNE Loop ; No => Next char

STR R1, CharCount ; Store result
SWI &11

AREA Datal, DATA
DCB "Hello, World", O

Initialise R1 to zero length

Strings — p. 7/16

¥

~_Program: strlen.s (Revised
1 A ()

1 ; Find the length of a null terminated string
2
/7 Main
8 LDR RO, =Datal ; Load the address of the lookup table
9 MOV R1, #0 , Set strlen to zero
10 Loop
11 LDRB RZ2,[RO, R1l] ; Read n-th byte
12 ADD R1, R1, #1 ; Increment strlen count
13 TEQ R2, #0 . Is 1t the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Datal, DATA
22 DCB "Hello, World", O
LDRB Read start of string + length byte (RO + R1)

Does not change string pointer (RO)

Strings — p. 7/16

~_Program: strlen.s (Revised
1 A ()

; Find the length of a null terminated string

Main

Loop

LDR RO, =Datal ; Load the address of the lookup table
MOV R1, #0 , Set strlen to zero

LDRB RZ2,[RO, R1l] ; Read n-th byte

ADD R1, R1, #1 ; Increment strlen count

TEQ R2, #0 ; Is it the terminator ?

BNE Loop ; No => Next char

STR R1, CharCount ; Store result
SWI &11

AREA Datal, DATA
DCB "Hello, World", O

Test Equality rather than full compare

Strings — p. 7/16

%

“Program: skipblanks.s
/ l 9 P

5 Blank EQU

8

9 Main

10 LDR

11 MOV
12 Loop

13 LDRB
14 CMP
15 BEQ

16

17 SUB

18 STR

19 SWi

20

21 AREA

24

DCB

RO, =Datal ; load the address of the lookup table
R1, #Blank ; store the blank char in R1

R2, [RO], #1 ; load the first byte into R2
R2, R1 ; Is It a blank
Loop ; If so loop

RO, RO, #1 ; otherwise done - adjust pointer
RO, Pointer ; and store it
&11

Datal, DATA
[1] 7 1

Strings — p. 8/16

%

“Program: skipblanks.s
/ l 9 P

5 BlankEQU " "
8
9 Main
10 LDR RO, =Datal ; load the address of the lookup table
11 MOV R1, #Blank ; store the blank char in R1
12 Loop
13 LDRB RZ2, [RO], #1 ; load the first byte into R2
14 CMP R2,R1 ;IS 1t a blank
15 BEQ Loop ; If so loop
16
17 SUB RO, RO, #1 ; otherwise done - adjust pointer
18 STR RO, Pointer ; and store it
19 SWI &11
20
21 AREA Datal, DATA
24 pDCB " 7 "

EQU Define Bl ank to be a space character

Strings — p. 8/16

%

“Program: skipblanks.s
/ l 9 P

5 Blank EQU
8
9 Main
10 LDR RO, =Datal ; load the address of the lookup table
11 MOV R1, #Blank ; store the blank char in R1
12 Loop
13 LDRB RZ2, [RO], #1 ; load the first byte into R2
14 CMP R2,R1 ;IS 1t a blank
15 BEQ Loop ; If so loop
16
17 SUB RO, RO, #1 ; otherwise done - adjust pointer
18 STR RO, Pointer ; and store it
19 SWI &11
20
21 AREA Datal, DATA
24 pDCB " 7 "

MOV R1 is the character to ignore

Strings — p. 8/16

Program: skipblanks.s

5 Blank EQU
8
9 Main
10 LDR RO, =Datal ; load the address of the lookup table
11 MOV R1, #Blank ; store the blank char in R1
12 Loop
13 LDRB RZ2, [RO], #1 ; load the first byte into R2
14 CMP R2,R1 ;IS 1t a blank
15 BEQ Loop ; If so loop
16
17 SUB RO, RO, #1 ; otherwise done - adjust pointer
18 STR RO, Pointer ; and store it
19 SWI &11
20
21 AREA Datal, DATA
24 DCB " 7 "

Eat leading blank’s

Strings — p. 8/16

¥

/# =Program: skipblanks.s
UL °° -

5 Blank EQU
8
9 Main
10 LDR RO, =Datal ; load the address of the lookup table
11 MOV R1, #Blank ; store the blank char in R1
12 Loop
13 LDRB RZ2, [RO], #1 ; load the first byte into R2
14 CMP R2,R1 ;IS 1t a blank
15 BEQ Loop ; If so loop
16
17 SUB RO, RO, #1 ; otherwise done - adjust pointer
18 STR RO, Pointer ; and store it
19 SWI &11
20
21 AREA Datal, DATA
24 pDCB " 7 "
SUB Loop always read one character ahead

to check if the character is to be ignored
So back up pointer by one character

Strings — p. 8/16

%

Blank EQU

Zero
Main

Loop

EQU

LDR
MOV
MOV

LDRB
CMP
BNE
SUB
STRB
ADD
BAL

DCB

" Program: padzero.s
1 A

101

RO, =Datal ; load the address of the lookup table
R1, #Zero : store the zero char in R1

R3, #Blank : and the blank char in R3

R2, [RO], #1 ; load the first byte into R2

R2, R1 ,Is It a zero

Done ; If not, done

RO, RO, #1 ; otherwise adjust the pointer
R3, [RO] , and store it blank char there
RO, RO, #1 ; otherwise adjust the pointer
Loop ; and loop

"000007000"

Strings — p. 9/16

Program: padzero.s

5 BlankEQU '’

6 Zero EQU 0O’
10 Main
11 LDR RO, =Datal ; load the address of the lookup table
12 MOV R1, #Zero ; store the zero charin R1
13 MOV R3S, #Blank ; and the blank char in R3
14 Loop
15 LDRB R2, [RO], #1 ; load the first byte into R2
16 CMP R2,R1 ,Is It a zero
17 BNE Done ; If not, done
19 SUB RO, RO, #1 ; otherwise adjust the pointer
20 STRB R3, [RO] , and store it blank char there
21 ADD RO, RO, #1 ; otherwise adjust the pointer
22 BAL Loop ; and loop
23
29 DCB "000007000"

EQU Define and use Bl ank

Strings — p. 9/16

Program: padzero.s

5 BlankEQU '’

6 Zero EQU 0O’
10 Main
11 LDR RO, =Datal ; load the address of the lookup table
12 MOV R1, #Zero ; store the zero charin R1
13 MOV R3S, #Blank ; and the blank char in R3
14 Loop
15 LDRB R2, [RO], #1 ; load the first byte into R2
16 CMP R2,R1 ,Is It a zero
17 BNE Done ; If not, done
19 SUB RO, RO, #1 ; otherwise adjust the pointer
20 STRB R3, [RO] , and store it blank char there
21 ADD RO, RO, #1 ; otherwise adjust the pointer
22 BAL Loop ; and loop
23
29 DCB "000007000"

EQU Define and use Zer o

Strings — p. 9/16

Program: padzero.s

5 BlankEQU '’
6 Zero EQU 0O’
10 Main
11 LDR RO, =Datal ; load the address of the lookup table
12 MOV R1, #Zero ; store the zero charin R1
13 MOV R3, #Blank ; and the blank char in R3
14 Loop
15 LDRB R2, [RO], #1 ; load the first byte into R2
16 CMP R2,R1 ;IS it a zero
17 BNE Done ; If not, done
19 SUB RO, RO, #1 ; otherwise adjust the pointer
20 STRB R3, [RO] , and store it blank char there
21 ADD RO, RO, #1 ; otherwise adjust the pointer
22 BAL Loop ; and loop
23
29 DCB "000007000"
ADD/SUB Adjust pointer

Strings — p. 9/16

Program: padzero.s

5 BlankEQU '’
6 Zero EQU 0O’
10 Main
11 LDR RO, =Datal ; load the address of the lookup table
12 MOV R1, #Zero ; store the zero charin R1
13 MOV R3, #Blank ; and the blank char in R3
14 Loop
15 LDRB R2, [RO], #1 ; load the first byte into R2
16 CMP R2,R1 ;IS It a zero
17 BNE Done ; If not, done
19 SUB RO, RO, #1 ; otherwise adjust the pointer
20 STRB R3, [RO] , and store it blank char there
21 ADD RO, RO, #1 ; otherwise adjust the pointer
22 BAL Loop ; and loop
23
29 DCB "000007000"
STRB STRB R3, [RO, #-1]

We don’t need to adjust the pointer

Strings — p. 9/16

Current Version
while (1) {
R2 = »(RO++);
if (RR 1= RL) {
br eak;

RO- -
*RO = RS;

Blank EQU

Zero
Main

Loop

EQU

LDR
MOV
MOV

LDRB
TEQ
STREQB
BEQ

DCB

RO, =Datal ; load the address of the lookup table
R1, #Zero - store the zero char in R1
R3, #Blank : and the blank char in R3

R2, [RO] , read byte at pointer

R1, R2 , Is It a zero (what we are looking for)
R3, [RO], #1 ; yes => replace with blank/inc pointer
Loop , Yes => Repeat until not target

"000007000"

Strings — p. 11/16

%

14
15
16
17

28
29
30
31
32
33
34
35

MainLoop
LDRB
MOV
MOV

TST
BEQ
ORR
STRB
BAL
Even STRB
Check SUBS
BNE

“Pro ram: setparity.s (Outer loo
/ l 9 parity.s (9)

R2, [RO], #1 Jload char into R2
R6, R2 ;keep a copy of the original char
R2, R2, LSL #24 ;shift so that we are dealing with msb

R3, #1 IS the parity even

Even JIf so branch

R6, R6, #0x80 ;otherwise set the parity bit

R6, [R5], #1 ,and store the amended char
Check

R6, [R5], #1 ,store unamended char if even
R1, R1, #1 ;,decrement the character count
MainLoop

Strings — p. 12/16

14
15
16
17

28
29
30
31
32
33
34
35

Program: setparity.s (Outer loop)

MainLoop
LDRB R2, [RO], #1 Jload char into R2
MOV R6, R2 ;keep a copy of the original char
MOV R2, R2, LSL #24 ;shift so that we are dealing with msb
TST R3, #1 IS the parity even
BEQ Even 1If so branch
ORR R6, R6, #0x80 ;otherwise set the parity bit
STRB RE6, [R5], #1 ,and store the amended char
BAL Check
Even STRB RG6, [R5], #1 ,store unamended char if even
Check SUBS R1, R1,#1 ,decrement the character count
BNE MainLoop

SUBS/BNE Repeat ... Until R1 is zero

Strings — p. 12/16

¥

_Program: setparity.s (Outer l0o
/ l 9 parity.s (P)

14 MainLoop

15 LDRB R2, [RO], #1 Jload char into R2

16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift so that we are dealing with msb
28 TST R3, #1 IS the parity even

29 BEQ Even 1If so branch

30 ORR RG6, R6, #0x80 ;otherwise set the parity bit

31 STRB RE6, [R5], #1 ,and store the amended char
32 BAL Check

33 Even STRB R6, [R5], #1 ,store unamended char if even
34 Check SUBS RI1,R1,#1 ;,decrement the character count
35 BNE MainLoop

LSL Shift LSByte to MSByte (24 bits)

Strings — p. 12/16

¥

_Program: setparity.s (Outer l0o
/ l 9 parity.s (P)

14 MainLoop

15 LDRB R2, [RO], #1 Jload char into R2

16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift so that we are dealing with msb
28 TST R3, #1 IS the parity even

29 BEQ Even 1If so branch

30 ORR RG6, R6, #0x80 ;otherwise set the parity bit

31 STRB RE6, [R5], #1 ,and store the amended char
32 BAL Check

33 Even STRB R6, [R5], #1 ,store unamended char if even
34 Check SUBS RI1,R1,#1 ;,decrement the character count
35 BNE MainLoop

TST Is the parity even — test LSBIt

Strings — p. 12/16

Program: setparity.s (Outer loop)

14 MainLoop
15 LDRB R2, [RO], #1 Jload char into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift so that we are dealing with msb
28 TST R3, #1 IS the parity even
29 BEQ Even 1If so branch
30 ORR RG6, R6, #0x80 ;otherwise set the parity bit
31 STRB RG6, [R5], #1 ,and store the amended char
32 BAL Check
33 Even STRB R6, [R5], #1 ,store unamended char if even
34 Check SUBS RI1,R1,#1 ;,decrement the character count
35 BNE MainLoop

BEQ/ORR Using conditional execution we can write:

CRRNE R6, R6, #0x80 ;add parity i1 f odd
STRB R6, [R5], #1 , store char

Strings — p. 12/16

%

18
19
20
21
22
23
24
25
26
27

ParLoop

DontAdd

MOV
MOV

MOVS
BPL
ADD

SUBS
BNE

“Pro ram: setparity.s (Inner loo
/ l 9 parity.s (p)

R3, #0 :zero the bit counter
R4, #7 ‘Init the shift counter

R2, R2, LSL #1 :left shift
DontAdd ‘If msb Is not a one bit, branch
R3, R3, #1 ‘otherwise add to bit count

R4, R4, #1 ;update shift count
ParLoop ;loop If still bits to check

Strings — p. 13/16

¥

_Program: setparity.s (Inner loo
/ l 9 parity.s (p)

18 MOV R3, #0 :zero the bit counter

19 MOV R4, #7 ‘Init the shift counter

20

21 ParLoop

22 MOVS R2, R2, LSL #1 :left shift

23 BPL DontAdd ‘If msb Is not a one bit, branch
24 ADD R3, R3, #1 ‘otherwise add to bit count

25 DontAdd

26 SUBS R4,R4,#1 ;update shift count

27 BNE ParLoop ;loop If still bits to check

SUBS/BNE Repeat ... Until R4 is zero

Strings — p. 13/16

%

“Pro ram: setparity.s (Inner loo
/ l 9 parity.s (p)

18 MOV R3, #0 :zero the bit counter

19 MOV R4, #7 ‘Init the shift counter

20

21 ParLoop

22 MOVS R2, R2, LSL #1 :left shift

23 BPL DontAdd ‘If msb Is not a one bit, branch
24 ADD R3, R3, #1 ‘otherwise add to bit count

25 DontAdd

26 SUBS R4, R4,#1 ;update shift count

27 BNE ParLoop ;loop If still bits to check

MOVS/LSL Move bits up one, MSB is echoed in Negative flag

Strings — p. 13/16

%

“Pro ram: setparity.s (Inner loo
/ l 9 parity.s (p)

18 MOV R3, #0 :zero the bit counter

19 MOV R4, #7 ‘Init the shift counter

20

21 ParLoop

22 MOVS R2, R2, LSL #1 :left shift

23 BPL DontAdd ‘If msb Is not a one bit, branch
24 ADD R3, R3, #1 ‘otherwise add to bit count

25 DontAdd

26 SUBS R4, R4,#1 ;update shift count

27 BNE ParLoop ;loop If still bits to check

BPL Skip add if positive (MSB is zero)

Strings — p. 13/16

¥

_Program: setparity.s (Inner loo
/ l 9 parity.s (p)

18 MOV R3, #0 ;zero the bit counter

19 MOV R4, #7 ;Init the shift counter

20

21 ParLoop

22 MOVS R2, R2, LSL #1 ;left shift

23 BPL DontAdd If msb Is not a one bit, branch

24 ADD R3, R3, #1 ;otherwise add to bit count

25 DontAdd

26 SUBS R4,R4,#1 ;update shift count

27 BNE ParLoop ;loop If still bits to check
BPL/ADD Using conditional execution we can avoid the Brach:

ADDM R3, R3, #1 :inc count i1 f NMSB set

Strings — p. 13/16

Program: setparity.s (Revised)

14 MainLoop

15 LDRB
16 MOV
17 MOV
18 MOV
19 MOV
20

21 ParLoop

22 MOVS
23 ADDMI
24 SUBS
25 BNE
26 TST
27 ORRNE
28 STRB
29 SUBS
20 BNE

R2, [RO], #1 ;load the first byte into R2

R6, R2 ;keep a copy of the original char
R2, R2, LSL #24 ;shift to deal with msb

R3, #0 .zero the bit counter

R4, #7 ‘Init the shift counter

R2, R2, LSL #1 ;shift MSB into Neg flag

R3, R3, #1 ;inc bit count if MSB Is set
R4, R4, #1 ;update shift count
ParLoop Jloop if still bits to check
R3, #1 IS the parity even

R6, R6, #0x80 ;set the parity bit if odd

R6, [R5], #1 ,and store the amended char
R1, R1, #1 ,decrement the character count
MainLoop

Strings — p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [RO], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;Zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB Is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop Jloop if still bits to check
26 TST R3, #1 IS the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ,and store the amended char
29 SUBS R1, R1, #1 ,decrement the character count
20 BNE MainLoop
SUBS/BNE Repeat ... Until R1 is zero (outer loop)

Strings — p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [RO], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;Zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB Is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop Jloop if still bits to check
26 TST R3, #1 IS the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ,and store the amended char
29 SUBS R1, R1, #1 ,decrement the character count
20 BNE MainLoop
LSL Shift LSByte to MSByte (24 bits)

Strings — p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [RO], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;Zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB Is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop Jloop if still bits to check
26 TST R3, #1 IS the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ,and store the amended char
29 SUBS R1, R1, #1 ,decrement the character count
20 BNE MainLoop
SUBS/BNE Repeat ... Until R4 is zero (inner loop)

Strings — p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [RO], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;Zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB Is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop Jloop if still bits to check
26 TST R3, #1 IS the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ,and store the amended char
29 SUBS R1, R1, #1 ,decrement the character count
20 BNE MainLoop
MOVS/LSL Move bits up one, set Negative flag to MSB

Strings — p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [RO], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;Zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB Is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop Jloop if still bits to check
26 TST R3, #1 IS the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ,and store the amended char
29 SUBS R1, R1, #1 ,decrement the character count
20 BNE MainLoop
ADDMI Increment parity counter if MSB is hi

Strings — p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [RO], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;Zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB Is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop Jloop if still bits to check
26 TST R3, #1 IS the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ,and store the amended char
29 SUBS R1, R1, #1 ,decrement the character count
20 BNE MainLoop
TST Is the parity even — test LSBIt

Strings — p. 14/16

Program: cstrcmp.s

11 LDR

12 LDR

13 LDR

14 CMP

15 BNE

17 CMP

18 BEQ

21 Loop

22 LDRB
23 LDRB
24 CMP
25 BNE

26 SUBS
27 BEQ

28

29 BAL

31 Same MOV
32 Done STR

R2, Match ;assume strings not equal — set to -1
R3, [RO], #4 ;store the first string length in R3
R4, [R1], #4 ;store the second string length in R4
R3, R4

Done If they are different lengths,
R3, #0 ;test for zero length if both are
Same ;zero length, nothing else to do

R5, [RO], #1 ;character of first string
R6, [R1], #1 ;character of second string

R5, R6 ,are they the same

Done If not the strings are different

R3, R3, #1 ;use the string length as a counter

Same ;If we got to the end of the count
;the strings are the same

Loop ;not done, loop

R2, #0 .clear the -1 from match (O = match)

R2, Match ;store the result

Strings — p. 15/16

LDR

Program: cstrcmp.s

11 LDR

12 LDR

13 LDR

14 CMP

15 BNE

17 CMP
18 BEQ

21 Loop

22 LDRB
23 LDRB
24 CMP
25 BNE

26 SUBS
27 BEQ

28

29 BAL

31 Same MOV
32 Done STR

R2, Match ;assume strings not equal — set to -1
R3, [RO], #4 ;store the first string length in R3
R4, [R1], #4 ;store the second string length in R4
R3, R4

Done If they are different lengths,
R3, #0 ;test for zero length if both are
Same ;zero length, nothing else to do

R5, [RO], #1 ;character of first string
R6, [R1], #1 ;character of second string

R5, R6 ,are they the same

Done If not the strings are different

R3, R3, #1 ;use the string length as a counter

Same ;If we got to the end of the count
;the strings are the same

Loop ;not done, loop

R2, #0 ,clear the -1 from match (0O = match)

R2, Match ;store the result

Assume result is false

Strings — p. 15/16

-"'_Program: cstrcmp.s

11 LDR

12 LDR

13 LDR

14 CMP
15 BNE

17 CMP
18 BEQ

21 Loop

22 LDRB
23 LDRB
24 CMP
25 BNE

26 SUBS
27 BEQ

28

29 BAL

31 Same MOV
32 Done STR

R2, Match ;assume strings not equal — set to -1
R3, [RO], #4 ;store the first string length in R3
R4, [R1], #4 ;store the second string length in R4
R3, R4

Done If they are different lengths,
R3, #0 ;test for zero length if both are
Same ;zero length, nothing else to do

R5, [RO], #1 ;character of first string
R6, [R1], #1 ;character of second string

R5, R6 ,are they the same

Done If not the strings are different

R3, R3, #1 ;use the string length as a counter

Same ;If we got to the end of the count
;the strings are the same

Loop ;not done, loop

R2, #0 .clear the -1 from match (O = match)

R2, Match ;store the result

We are using counted strings with a 4-byte count

Strings — p. 15/16

BNE

-"'_Program: cstrcmp.s

11 LDR

12 LDR

13 LDR

14 CMP

15 BNE

17 CMP

18 BEQ

21 Loop

22 LDRB
23 LDRB
24 CMP
25 BNE

26 SUBS
27 BEQ

28

29 BAL

31 Same MOV
32 Done STR

R2, Match ;assume strings not equal — set to -1
R3, [RO], #4 ;store the first string length in R3
R4, [R1], #4 ;store the second string length in R4
R3, R4

Done If they are different lengths,
R3, #0 ;test for zero length if both are
Same ;zero length, nothing else to do

R5, [RO], #1 ;character of first string
R6, [R1], #1 ;character of second string

R5, R6 ,are they the same

Done If not the strings are different

R3, R3, #1 ;use the string length as a counter

Same ;If we got to the end of the count
;the strings are the same

Loop ;not done, loop

R2, #0 ,clear the -1 from match (0O = match)

R2, Match ;store the result

Abort if string lengths differ

Strings — p. 15/16

BEQ

-"'_Program: cstrcmp.s

11 LDR

12 LDR

13 LDR

14 CMP

15 BNE

17 CMP
18 BEQ

21 Loop

22 LDRB
23 LDRB
24 CMP
25 BNE

26 SUBS
27 BEQ

28

29 BAL

31 Same MOV
32 Done STR

R2, Match ;assume strings not equal — set to -1
R3, [RO], #4 ;store the first string length in R3
R4, [R1], #4 ;store the second string length in R4
R3, R4

Done If they are different lengths,
R3, #0 ;test for zero length if both are
Same ;zero length, nothing else to do

R5, [RO], #1 ;character of first string
R6, [R1], #1 ;character of second string

R5, R6 ,are they the same

Done If not the strings are different

R3, R3, #1 ;use the string length as a counter

Same ;If we got to the end of the count
;the strings are the same

Loop ;not done, loop

R2, #0 ,clear the -1 from match (0O = match)

R2, Match ;store the result

Abort if no string to compare

Strings — p. 15/16

BNE

-"'_Program: cstrcmp.s

11 LDR

12 LDR

13 LDR

14 CMP

15 BNE

17 CMP

18 BEQ

21 Loop

22 LDRB
23 LDRB
24 CMP
25 BNE

26 SUBS
27 BEQ

28

29 BAL

31 Same MOV
32 Done STR

R2, Match ;assume strings not equal — set to -1
R3, [RO], #4 ;store the first string length in R3
R4, [R1], #4 ;store the second string length in R4
R3, R4

Done If they are different lengths,
R3, #0 ;test for zero length if both are
Same ;zero length, nothing else to do

R5, [RO], #1 ;character of first string
R6, [R1], #1 ;character of second string

R5, R6 ,are they the same

Done If not the strings are different

R3, R3, #1 ;use the string length as a counter

Same If we got to the end of the count
;the strings are the same

Loop ;not done, loop

R2, #0 .clear the -1 from match (O = match)

R2, Match :store the result

Exit on first difference found

Strings — p. 15/16

Program: cstrcmp.s

11 LDR

12 LDR

13 LDR

14 CMP
15 BNE

17 CMP
18 BEQ

21 Loop

22 LDRB
23 LDRB
24 CMP
25 BNE

26 SUBS
27 BEQ

28

29 BAL

31 Same MOV
32 Done STR

Number of re
iy f

gisters used: RO, R1, R2, R3, R4, R5, R6

R2, Match ;assume strings not equal — set to -1
R3, [RO], #4 ;store the first string length in R3
R4, [R1], #4 ;store the second string length in R4
R3, R4

Done If they are different lengths,
R3, #0 ;test for zero length if both are
Same ;zero length, nothing else to do

R5, [RO], #1 ;character of first string
R6, [R1], #1 ;character of second string

R5, R6 ,are they the same

Done If not the strings are different

R3, R3, #1 ;use the string length as a counter

Same ;If we got to the end of the count
;the strings are the same

Loop ;not done, loop

R2, #0 .clear the -1 from match (O = match)

R2, Match ;store the result

Strings — p. 15/16

“Program: strcmp.s
e A P

Countl

Count2

LDR
LDR
LDR
MOV
MOV

LDRB
CMP
BEQ
ADD
BAL

LDRB
CMP
BEQ
ADD
BAL

RO, =Datal ;load the address of the lookup table
R1, =Data2
R2, Match ;assume strings not equal, set to -1

R3, #0 Init register

R4, #0

R5, [RO], #1 ;load the first byte into R5
R5, #0 IS it the terminator
Count2 ;iIf not, Loop

R3, R3, #1 :Increment count

Countl

R5, [R1], #1 ;load the first byte into R5
R5, #0 ‘IS It the terminator

Next iIf not, Loop

R4, R4, #1 :increment count

Count2

Strings — p. 16/16

“Program: strcmp.s
e "’ P

9 LDR RO, =Datal ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 Init register
13 MOV R4, #0
14 Countl
15 LDRB RS5, [RO], #1 ;load the first byte into R5
16 CMP R5, #0 IS it the terminator
17 BEQ Count2 ;iIf not, Loop
18 ADD R3, R3, #1 ;increment count
19 BAL Countl
20 Count2
21 LDRB R5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 IS It the terminator
23 BEQ Next iIf not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2

LDR Assume result is false

Strings — p. 16/16

14

20

-"-Program: strcmp.s

Countl

Count2

LDR RO, =Datal ;load the address of the lookup table
LDR R1, =Data2
LDR R2, Match ;assume strings not equal, set to -1

MOV R3, #0 Init register
MOV R4, #0
LDRB RS5, [RO], #1 ;load the first byte into R5
CMP R5, #0 IS it the terminator
BEQ Count2 If not, Loop
ADD R3, R3, #1 ;increment count
BAL Countl
LDRB R5, [R1], #1 ;load the first byte into R5
CMP R5, #0 IS It the terminator
BEQ Next iIf not, Loop
ADD R4, R4, #1 ;increment count
BAL Count2
strlen(tablel)

Calculate length of first string

Strings — p. 16/16

-"-Program: strcmp.s

Countl

Count2

LDR RO, =Datal ;load the address of the lookup table
LDR R1, =Data2
LDR R2, Match ;assume strings not equal, set to -1

MOV R3, #0 Init register
MOV R4, #0
LDRB RS5, [RO], #1 ;load the first byte into R5
CMP R5, #0 1S 1t the terminator
BEQ Count2 ;iIf not, Loop
ADD R3, R3, #1 ;increment count
BAL Countl
LDRB RS5, [R1], #1 ;load the first byte into R5
CMP R5, #0 IS It the terminator
BEQ Next If not, Loop
ADD R4, R4, #1 ;increment count
BAL Count2
strlen(table?2)

Calculate length of second string

Strings — p. 16/16

Program: strcmp.s

9 LDR RO, =Datal ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 Init register
13 MOV R4, #0
14 Countl
15 LDRB RS5, [RO], #1 ;load the first byte into R5
16 CMP R5, #0 1S it the terminator
17 BEQ Count2 If not, Loop
18 ADD R3,R3, #1 ;increment count
19 BAL Countl
20 Count2
21 LDRB RS5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 IS It the terminator
23 BEQ Next If not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2
BEQ/ADD Conditional Execution:

ADDNE Rx, Rx, #1 ; inc string length

rings — p. 16/16

“Program: strcmp.s
e "’ P

9 LDR RO, =Datal ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 Init register
13 MOV R4, #0
14 Countl
15 LDRB RS5, [RO], #1 ;load the first byte into R5
16 CMP R5, #0 IS it the terminator
17 BEQ Count2 ;iIf not, Loop
18 ADD R3, R3, #1 ;increment count
19 BAL Countl
20 Count2
21 LDRB R5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 IS It the terminator
23 BEQ Next iIf not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2

Compared to two LDR instructions incstrcnp. s

Strings — p. 16/16

“Program: strcmp.s
e "’ P

9 LDR RO, =Datal ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 Init register
13 MOV R4, #0
14 Countl
15 LDRB RS5, [RO], #1 ;load the first byte into R5
16 CMP R5, #0 IS it the terminator
17 BEQ Count2 ;iIf not, Loop
18 ADD R3, R3, #1 ;increment count
19 BAL Countl
20 Count2
21 LDRB R5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 IS It the terminator
23 BEQ Next iIf not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2

| Counted strings are easier to work with !

Strings — p. 16/16

	Systems Architecture
	Characters or Strings
	Fixed Length / Terminated Strings
	Counted Strings
	Program: strlencr.s
	Program: strlencr.s
	Program: strlencr.s
	Program: strlencr.s
	Program: strlencr.s

	Program: strlen.s
	Program: strlen.s
	Program: strlen.s
	Program: strlen.s

	Program: strlen.s (Revised)
	Program: strlen.s (Revised)
	Program: strlen.s (Revised)
	Program: strlen.s (Revised)

	Program: skipblanks.s
	Program: skipblanks.s
	Program: skipblanks.s
	Program: skipblanks.s
	Program: skipblanks.s

	Program: padzero.s
	Program: padzero.s
	Program: padzero.s
	Program: padzero.s
	Program: padzero.s

	Program: padzero.s (written in C)
	Program: padzero.s (written in C)

	Program: padzero.s (Revised)
	Program: setparity.s (Outer loop)
	Program: setparity.s (Outer loop)
	Program: setparity.s (Outer loop)
	Program: setparity.s (Outer loop)
	Program: setparity.s (Outer loop)

	Program: setparity.s (Inner loop)
	Program: setparity.s (Inner loop)
	Program: setparity.s (Inner loop)
	Program: setparity.s (Inner loop)
	Program: setparity.s (Inner loop)

	Program: setparity.s (Revised)
	Program: setparity.s (Revised)
	Program: setparity.s (Revised)
	Program: setparity.s (Revised)
	Program: setparity.s (Revised)
	Program: setparity.s (Revised)
	Program: setparity.s (Revised)

	Program: cstrcmp.s
	Program: cstrcmp.s
	Program: cstrcmp.s
	Program: cstrcmp.s
	Program: cstrcmp.s
	Program: cstrcmp.s
	Program: cstrcmp.s

	Program: strcmp.s
	Program: strcmp.s
	Program: strcmp.s
	Program: strcmp.s
	Program: strcmp.s
	Program: strcmp.s
	Program: strcmp.s

