
Systems Architecture

ARM Assembler

Strings

Strings – p. 1/16

Characters or Strings

• A string is a sequence of characters

• ASCII — 7-bit (American) character codes
One byte per character (char)

• Unicode — International character code
Two bytes per (wide) character (wchar)

• Unicode32 — Extended version of Unicode
Four bytes per (wide) character (wchar)

• You need to know which type you are using
strlen() — Length of ASCII string
wcslen() — Length of Unicode string

Strings – p. 2/16

Fixed Length / Terminated Strings

• Fixed Length
String is always n characters
String is truncated if too long
String is padded out if too short

• Terminated
Special character to mark end of string
Normally a NUL (0x00) is used

• char name[10]

Fixed Length or Terminated ?

Terminated if string is short (under 10 chars)
Truncated if string is long (over 10 chars)
⇒ Be careful of buffer overrun

Strings – p. 3/16

Counted Strings

• First byte (or halfword) is a count which
indicates number of characters in string

struct counted_string_s {

int count;

char string[];

};

• Used by Pascal, ADA, Basic, Fortran, . . .

Strings – p. 4/16

Program: strlencr.s

1 ; Find the length of a CR terminated string
2
5 CR EQU 0x0D
6

10 Main
11 LDR R0, =Data1 ; Load the address of the lookup table
12 EOR R1, R1, R1 ; Clear R1 to store count
13 Loop
14 LDRB R2, [R0], #1 ; Load the first byte into R2
15 CMP R2, #CR ; Is it the terminator ?
16 BEQ Done ; Yes => Stop loop
17 ADD R1, R1, #1 ; No => Increment count
18 BAL Loop ; Read next char
19
24 AREA Data1, DATA
27 DCB "Hello, World", CR

Strings – p. 5/16

Program: strlencr.s

1 ; Find the length of a CR terminated string
2
5 CR EQU 0x0D
6

10 Main
11 LDR R0, =Data1 ; Load the address of the lookup table
12 EOR R1, R1, R1 ; Clear R1 to store count
13 Loop
14 LDRB R2, [R0], #1 ; Load the first byte into R2
15 CMP R2, #CR ; Is it the terminator ?
16 BEQ Done ; Yes => Stop loop
17 ADD R1, R1, #1 ; No => Increment count
18 BAL Loop ; Read next char
19
24 AREA Data1, DATA
27 DCB "Hello, World", CR

EQU Equate a label CR to 0x0D (13), the string terminator

Strings – p. 5/16

Program: strlencr.s

1 ; Find the length of a CR terminated string
2
5 CR EQU 0x0D
6

10 Main
11 LDR R0, =Data1 ; Load the address of the lookup table
12 EOR R1, R1, R1 ; Clear R1 to store count
13 Loop
14 LDRB R2, [R0], #1 ; Load the first byte into R2
15 CMP R2, #CR ; Is it the terminator ?
16 BEQ Done ; Yes => Stop loop
17 ADD R1, R1, #1 ; No => Increment count
18 BAL Loop ; Read next char
19
24 AREA Data1, DATA
27 DCB "Hello, World", CR

CMP Compare the character to the terminator (CR)

Easier to read than: CMP R2, 0x0D

Strings – p. 5/16

Program: strlencr.s

1 ; Find the length of a CR terminated string
2
5 CR EQU 0x0D
6

10 Main
11 LDR R0, =Data1 ; Load the address of the lookup table
12 EOR R1, R1, R1 ; Clear R1 to store count
13 Loop
14 LDRB R2, [R0], #1 ; Load the first byte into R2
15 CMP R2, #CR ; Is it the terminator ?
16 BEQ Done ; Yes => Stop loop
17 ADD R1, R1, #1 ; No => Increment count
18 BAL Loop ; Read next char
19
24 AREA Data1, DATA
27 DCB "Hello, World", CR

DCB Define a string of characters

Strings – p. 5/16

Program: strlencr.s

1 ; Find the length of a CR terminated string
2
5 CR EQU 0x0D
6

10 Main
11 LDR R0, =Data1 ; Load the address of the lookup table
12 EOR R1, R1, R1 ; Clear R1 to store count
13 Loop
14 LDRB R2, [R0], #1 ; Load the first byte into R2
15 CMP R2, #CR ; Is it the terminator ?
16 BEQ Done ; Yes => Stop loop
17 ADD R1, R1, #1 ; No => Increment count
18 BAL Loop ; Read next char
19
24 AREA Data1, DATA
27 DCB "Hello, World", CR

Using conditional execution we could write:
ADDNE R1, R1, #1
BNE Loop

Strings – p. 5/16

Program: strlen.s

1 ; Find the length of a null terminated string
2
7 Main
8 LDR R0, =Data1 ; Load the address of the lookup table
9 MOV R1, #-1 ; Start count at -1

10 Loop
11 ADD R1, R1, #1 ; Increment count
12 LDRB R2, [R0], #1 ; Load the first byte into R2
13 CMP R2, #0 ; Is it the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Data1, DATA
22 DCB "Hello, World", 0

Strings – p. 6/16

Program: strlen.s

1 ; Find the length of a null terminated string
2
7 Main
8 LDR R0, =Data1 ; Load the address of the lookup table
9 MOV R1, #-1 ; Start count at -1

10 Loop
11 ADD R1, R1, #1 ; Increment count
12 LDRB R2, [R0], #1 ; Load the first byte into R2
13 CMP R2, #0 ; Is it the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Data1, DATA
22 DCB "Hello, World", 0

MOV Initialise R1 to -1 to counter the first increment

Strings – p. 6/16

Program: strlen.s

1 ; Find the length of a null terminated string
2
7 Main
8 LDR R0, =Data1 ; Load the address of the lookup table
9 MOV R1, #-1 ; Start count at -1

10 Loop
11 ADD R1, R1, #1 ; Increment count
12 LDRB R2, [R0], #1 ; Load the first byte into R2
13 CMP R2, #0 ; Is it the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Data1, DATA
22 DCB "Hello, World", 0

LDRB Increment pointer (R0)

Strings – p. 6/16

Program: strlen.s

1 ; Find the length of a null terminated string
2
7 Main
8 LDR R0, =Data1 ; Load the address of the lookup table
9 MOV R1, #-1 ; Start count at -1

10 Loop
11 ADD R1, R1, #1 ; Increment count
12 LDRB R2, [R0], #1 ; Load the first byte into R2
13 CMP R2, #0 ; Is it the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Data1, DATA
22 DCB "Hello, World", 0

CMP We must check for zero. as LDRB can not set the flags

Strings – p. 6/16

Program: strlen.s (Revised)

1 ; Find the length of a null terminated string
2
7 Main
8 LDR R0, =Data1 ; Load the address of the lookup table
9 MOV R1, #0 ; Set strlen to zero

10 Loop
11 LDRB R2, [R0, R1] ; Read n-th byte
12 ADD R1, R1, #1 ; Increment strlen count
13 TEQ R2, #0 ; Is it the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Data1, DATA
22 DCB "Hello, World", 0

Strings – p. 7/16

Program: strlen.s (Revised)

1 ; Find the length of a null terminated string
2
7 Main
8 LDR R0, =Data1 ; Load the address of the lookup table
9 MOV R1, #0 ; Set strlen to zero

10 Loop
11 LDRB R2, [R0, R1] ; Read n-th byte
12 ADD R1, R1, #1 ; Increment strlen count
13 TEQ R2, #0 ; Is it the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Data1, DATA
22 DCB "Hello, World", 0

MOV Initialise R1 to zero length

Strings – p. 7/16

Program: strlen.s (Revised)

1 ; Find the length of a null terminated string
2
7 Main
8 LDR R0, =Data1 ; Load the address of the lookup table
9 MOV R1, #0 ; Set strlen to zero

10 Loop
11 LDRB R2, [R0, R1] ; Read n-th byte
12 ADD R1, R1, #1 ; Increment strlen count
13 TEQ R2, #0 ; Is it the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Data1, DATA
22 DCB "Hello, World", 0

LDRB Read start of string + length byte (R0 + R1)
Does not change string pointer (R0)

Strings – p. 7/16

Program: strlen.s (Revised)

1 ; Find the length of a null terminated string
2
7 Main
8 LDR R0, =Data1 ; Load the address of the lookup table
9 MOV R1, #0 ; Set strlen to zero

10 Loop
11 LDRB R2, [R0, R1] ; Read n-th byte
12 ADD R1, R1, #1 ; Increment strlen count
13 TEQ R2, #0 ; Is it the terminator ?
14 BNE Loop ; No => Next char
15
16 STR R1, CharCount ; Store result
17 SWI &11
18
19 AREA Data1, DATA
22 DCB "Hello, World", 0

TEQ Test Equality rather than full compare

Strings – p. 7/16

Program: skipblanks.s

5 Blank EQU " "
8
9 Main

10 LDR R0, =Data1 ; load the address of the lookup table
11 MOV R1, #Blank ; store the blank char in R1
12 Loop
13 LDRB R2, [R0], #1 ; load the first byte into R2
14 CMP R2, R1 ; is it a blank
15 BEQ Loop ; if so loop
16
17 SUB R0, R0, #1 ; otherwise done - adjust pointer
18 STR R0, Pointer ; and store it
19 SWI &11
20
21 AREA Data1, DATA
24 DCB " 7 "

Strings – p. 8/16

Program: skipblanks.s

5 Blank EQU " "
8
9 Main

10 LDR R0, =Data1 ; load the address of the lookup table
11 MOV R1, #Blank ; store the blank char in R1
12 Loop
13 LDRB R2, [R0], #1 ; load the first byte into R2
14 CMP R2, R1 ; is it a blank
15 BEQ Loop ; if so loop
16
17 SUB R0, R0, #1 ; otherwise done - adjust pointer
18 STR R0, Pointer ; and store it
19 SWI &11
20
21 AREA Data1, DATA
24 DCB " 7 "

EQU Define Blank to be a space character

Strings – p. 8/16

Program: skipblanks.s

5 Blank EQU " "
8
9 Main

10 LDR R0, =Data1 ; load the address of the lookup table
11 MOV R1, #Blank ; store the blank char in R1
12 Loop
13 LDRB R2, [R0], #1 ; load the first byte into R2
14 CMP R2, R1 ; is it a blank
15 BEQ Loop ; if so loop
16
17 SUB R0, R0, #1 ; otherwise done - adjust pointer
18 STR R0, Pointer ; and store it
19 SWI &11
20
21 AREA Data1, DATA
24 DCB " 7 "

MOV R1 is the character to ignore

Strings – p. 8/16

Program: skipblanks.s

5 Blank EQU " "
8
9 Main

10 LDR R0, =Data1 ; load the address of the lookup table
11 MOV R1, #Blank ; store the blank char in R1
12 Loop
13 LDRB R2, [R0], #1 ; load the first byte into R2
14 CMP R2, R1 ; is it a blank
15 BEQ Loop ; if so loop
16
17 SUB R0, R0, #1 ; otherwise done - adjust pointer
18 STR R0, Pointer ; and store it
19 SWI &11
20
21 AREA Data1, DATA
24 DCB " 7 "

Eat leading blank’s

Strings – p. 8/16

Program: skipblanks.s

5 Blank EQU " "
8
9 Main

10 LDR R0, =Data1 ; load the address of the lookup table
11 MOV R1, #Blank ; store the blank char in R1
12 Loop
13 LDRB R2, [R0], #1 ; load the first byte into R2
14 CMP R2, R1 ; is it a blank
15 BEQ Loop ; if so loop
16
17 SUB R0, R0, #1 ; otherwise done - adjust pointer
18 STR R0, Pointer ; and store it
19 SWI &11
20
21 AREA Data1, DATA
24 DCB " 7 "

SUB Loop always read one character ahead
to check if the character is to be ignored
So back up pointer by one character

Strings – p. 8/16

Program: padzero.s

5 Blank EQU ’ ’
6 Zero EQU ’0’

10 Main
11 LDR R0, =Data1 ; load the address of the lookup table
12 MOV R1, #Zero ; store the zero char in R1
13 MOV R3, #Blank ; and the blank char in R3
14 Loop
15 LDRB R2, [R0], #1 ; load the first byte into R2
16 CMP R2, R1 ; is it a zero
17 BNE Done ; if not, done
19 SUB R0, R0, #1 ; otherwise adjust the pointer
20 STRB R3, [R0] ; and store it blank char there
21 ADD R0, R0, #1 ; otherwise adjust the pointer
22 BAL Loop ; and loop
23
29 DCB "000007000"

Strings – p. 9/16

Program: padzero.s

5 Blank EQU ’ ’
6 Zero EQU ’0’

10 Main
11 LDR R0, =Data1 ; load the address of the lookup table
12 MOV R1, #Zero ; store the zero char in R1
13 MOV R3, #Blank ; and the blank char in R3
14 Loop
15 LDRB R2, [R0], #1 ; load the first byte into R2
16 CMP R2, R1 ; is it a zero
17 BNE Done ; if not, done
19 SUB R0, R0, #1 ; otherwise adjust the pointer
20 STRB R3, [R0] ; and store it blank char there
21 ADD R0, R0, #1 ; otherwise adjust the pointer
22 BAL Loop ; and loop
23
29 DCB "000007000"

EQU Define and use Blank

Strings – p. 9/16

Program: padzero.s

5 Blank EQU ’ ’
6 Zero EQU ’0’

10 Main
11 LDR R0, =Data1 ; load the address of the lookup table
12 MOV R1, #Zero ; store the zero char in R1
13 MOV R3, #Blank ; and the blank char in R3
14 Loop
15 LDRB R2, [R0], #1 ; load the first byte into R2
16 CMP R2, R1 ; is it a zero
17 BNE Done ; if not, done
19 SUB R0, R0, #1 ; otherwise adjust the pointer
20 STRB R3, [R0] ; and store it blank char there
21 ADD R0, R0, #1 ; otherwise adjust the pointer
22 BAL Loop ; and loop
23
29 DCB "000007000"

EQU Define and use Zero

Strings – p. 9/16

Program: padzero.s

5 Blank EQU ’ ’
6 Zero EQU ’0’

10 Main
11 LDR R0, =Data1 ; load the address of the lookup table
12 MOV R1, #Zero ; store the zero char in R1
13 MOV R3, #Blank ; and the blank char in R3
14 Loop
15 LDRB R2, [R0], #1 ; load the first byte into R2
16 CMP R2, R1 ; is it a zero
17 BNE Done ; if not, done
19 SUB R0, R0, #1 ; otherwise adjust the pointer
20 STRB R3, [R0] ; and store it blank char there
21 ADD R0, R0, #1 ; otherwise adjust the pointer
22 BAL Loop ; and loop
23
29 DCB "000007000"

ADD/SUB Adjust pointer

Strings – p. 9/16

Program: padzero.s

5 Blank EQU ’ ’
6 Zero EQU ’0’

10 Main
11 LDR R0, =Data1 ; load the address of the lookup table
12 MOV R1, #Zero ; store the zero char in R1
13 MOV R3, #Blank ; and the blank char in R3
14 Loop
15 LDRB R2, [R0], #1 ; load the first byte into R2
16 CMP R2, R1 ; is it a zero
17 BNE Done ; if not, done
19 SUB R0, R0, #1 ; otherwise adjust the pointer
20 STRB R3, [R0] ; and store it blank char there
21 ADD R0, R0, #1 ; otherwise adjust the pointer
22 BAL Loop ; and loop
23
29 DCB "000007000"

STRB STRB R3, [R0, #-1]
We don’t need to adjust the pointer

Strings – p. 9/16

Program: padzero.s (written in C)

• Current Version

while (1) {

R2 = *(R0++);

if (R2 != R1) {

break;

}

R0--;

*R0 = R3;

R0++;

}

Strings – p. 10/16

Program: padzero.s (written in C)

• Current Version • Revised Version

while (1) { do {

R2 = *(R0++); R2 = *R0;

if (R2 != R1) { if (R2 == R1) {

break; *(R0++) = R3;

} }

R0--; } while (R2 == R1);

*R0 = R3;

R0++;

}

Strings – p. 10/16

Program: padzero.s (Revised)

5 Blank EQU ’ ’
6 Zero EQU ’0’

10 Main
11 LDR R0, =Data1 ; load the address of the lookup table
12 MOV R1, #Zero ; store the zero char in R1
13 MOV R3, #Blank ; and the blank char in R3
14 Loop
15 LDRB R2, [R0] ; read byte at pointer
16 TEQ R1, R2 ; is it a zero (what we are looking for)
17 STREQB R3, [R0], #1 ; yes => replace with blank/inc pointer
19 BEQ Loop ; Yes => Repeat until not target
20
21
22
23
29 DCB "000007000"

Strings – p. 11/16

Program: setparity.s (Outer loop)

14 MainLoop
15 LDRB R2, [R0], #1 ;load char into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift so that we are dealing with msb

...
28 TST R3, #1 ;is the parity even
29 BEQ Even ;if so branch
30 ORR R6, R6, #0x80 ;otherwise set the parity bit
31 STRB R6, [R5], #1 ;and store the amended char
32 BAL Check
33 Even STRB R6, [R5], #1 ;store unamended char if even
34 Check SUBS R1, R1, #1 ;decrement the character count
35 BNE MainLoop

Strings – p. 12/16

Program: setparity.s (Outer loop)

14 MainLoop
15 LDRB R2, [R0], #1 ;load char into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift so that we are dealing with msb

...
28 TST R3, #1 ;is the parity even
29 BEQ Even ;if so branch
30 ORR R6, R6, #0x80 ;otherwise set the parity bit
31 STRB R6, [R5], #1 ;and store the amended char
32 BAL Check
33 Even STRB R6, [R5], #1 ;store unamended char if even
34 Check SUBS R1, R1, #1 ;decrement the character count
35 BNE MainLoop

SUBS/BNE Repeat . . . Until R1 is zero

Strings – p. 12/16

Program: setparity.s (Outer loop)

14 MainLoop
15 LDRB R2, [R0], #1 ;load char into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift so that we are dealing with msb

...
28 TST R3, #1 ;is the parity even
29 BEQ Even ;if so branch
30 ORR R6, R6, #0x80 ;otherwise set the parity bit
31 STRB R6, [R5], #1 ;and store the amended char
32 BAL Check
33 Even STRB R6, [R5], #1 ;store unamended char if even
34 Check SUBS R1, R1, #1 ;decrement the character count
35 BNE MainLoop

LSL Shift LSByte to MSByte (24 bits)

Strings – p. 12/16

Program: setparity.s (Outer loop)

14 MainLoop
15 LDRB R2, [R0], #1 ;load char into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift so that we are dealing with msb

...
28 TST R3, #1 ;is the parity even
29 BEQ Even ;if so branch
30 ORR R6, R6, #0x80 ;otherwise set the parity bit
31 STRB R6, [R5], #1 ;and store the amended char
32 BAL Check
33 Even STRB R6, [R5], #1 ;store unamended char if even
34 Check SUBS R1, R1, #1 ;decrement the character count
35 BNE MainLoop

TST Is the parity even – test LSBit

Strings – p. 12/16

Program: setparity.s (Outer loop)

14 MainLoop
15 LDRB R2, [R0], #1 ;load char into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift so that we are dealing with msb

...
28 TST R3, #1 ;is the parity even
29 BEQ Even ;if so branch
30 ORR R6, R6, #0x80 ;otherwise set the parity bit
31 STRB R6, [R5], #1 ;and store the amended char
32 BAL Check
33 Even STRB R6, [R5], #1 ;store unamended char if even
34 Check SUBS R1, R1, #1 ;decrement the character count
35 BNE MainLoop

BEQ/ORR Using conditional execution we can write:
ORRNE R6, R6, #0x80 ;add parity if odd
STRB R6, [R5], #1 ;store char

Strings – p. 12/16

Program: setparity.s (Inner loop)

18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;left shift
23 BPL DontAdd ;if msb is not a one bit, branch
24 ADD R3, R3, #1 ;otherwise add to bit count
25 DontAdd
26 SUBS R4, R4, #1 ;update shift count
27 BNE ParLoop ;loop if still bits to check

Strings – p. 13/16

Program: setparity.s (Inner loop)

18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;left shift
23 BPL DontAdd ;if msb is not a one bit, branch
24 ADD R3, R3, #1 ;otherwise add to bit count
25 DontAdd
26 SUBS R4, R4, #1 ;update shift count
27 BNE ParLoop ;loop if still bits to check

SUBS/BNE Repeat . . . Until R4 is zero

Strings – p. 13/16

Program: setparity.s (Inner loop)

18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;left shift
23 BPL DontAdd ;if msb is not a one bit, branch
24 ADD R3, R3, #1 ;otherwise add to bit count
25 DontAdd
26 SUBS R4, R4, #1 ;update shift count
27 BNE ParLoop ;loop if still bits to check

MOVS/LSL Move bits up one, MSB is echoed in Negative flag

Strings – p. 13/16

Program: setparity.s (Inner loop)

18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;left shift
23 BPL DontAdd ;if msb is not a one bit, branch
24 ADD R3, R3, #1 ;otherwise add to bit count
25 DontAdd
26 SUBS R4, R4, #1 ;update shift count
27 BNE ParLoop ;loop if still bits to check

BPL Skip add if positive (MSB is zero)

Strings – p. 13/16

Program: setparity.s (Inner loop)

18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;left shift
23 BPL DontAdd ;if msb is not a one bit, branch
24 ADD R3, R3, #1 ;otherwise add to bit count
25 DontAdd
26 SUBS R4, R4, #1 ;update shift count
27 BNE ParLoop ;loop if still bits to check

BPL/ADD Using conditional execution we can avoid the Brach:
ADDMI R3, R3, #1 ;inc count if MSB set

Strings – p. 13/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [R0], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop ;loop if still bits to check
26 TST R3, #1 ;is the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ;and store the amended char
29 SUBS R1, R1, #1 ;decrement the character count
20 BNE MainLoop

Strings – p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [R0], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop ;loop if still bits to check
26 TST R3, #1 ;is the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ;and store the amended char
29 SUBS R1, R1, #1 ;decrement the character count
20 BNE MainLoop

SUBS/BNE Repeat . . . Until R1 is zero (outer loop)
Strings – p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [R0], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop ;loop if still bits to check
26 TST R3, #1 ;is the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ;and store the amended char
29 SUBS R1, R1, #1 ;decrement the character count
20 BNE MainLoop

LSL Shift LSByte to MSByte (24 bits)
Strings – p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [R0], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop ;loop if still bits to check
26 TST R3, #1 ;is the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ;and store the amended char
29 SUBS R1, R1, #1 ;decrement the character count
20 BNE MainLoop

SUBS/BNE Repeat . . . Until R4 is zero (inner loop)
Strings – p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [R0], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop ;loop if still bits to check
26 TST R3, #1 ;is the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ;and store the amended char
29 SUBS R1, R1, #1 ;decrement the character count
20 BNE MainLoop

MOVS/LSL Move bits up one, set Negative flag to MSB
Strings – p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [R0], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop ;loop if still bits to check
26 TST R3, #1 ;is the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ;and store the amended char
29 SUBS R1, R1, #1 ;decrement the character count
20 BNE MainLoop

ADDMI Increment parity counter if MSB is hi
Strings – p. 14/16

Program: setparity.s (Revised)

14 MainLoop
15 LDRB R2, [R0], #1 ;load the first byte into R2
16 MOV R6, R2 ;keep a copy of the original char
17 MOV R2, R2, LSL #24 ;shift to deal with msb
18 MOV R3, #0 ;zero the bit counter
19 MOV R4, #7 ;init the shift counter
20
21 ParLoop
22 MOVS R2, R2, LSL #1 ;shift MSB into Neg flag
23 ADDMI R3, R3, #1 ;inc bit count if MSB is set
24 SUBS R4, R4, #1 ;update shift count
25 BNE ParLoop ;loop if still bits to check
26 TST R3, #1 ;is the parity even
27 ORRNE R6, R6, #0x80 ;set the parity bit if odd
28 STRB R6, [R5], #1 ;and store the amended char
29 SUBS R1, R1, #1 ;decrement the character count
20 BNE MainLoop

TST Is the parity even – test LSBit
Strings – p. 14/16

Program: cstrcmp.s

11 LDR R2, Match ;assume strings not equal – set to -1
12 LDR R3, [R0], #4 ;store the first string length in R3
13 LDR R4, [R1], #4 ;store the second string length in R4
14 CMP R3, R4
15 BNE Done ;if they are different lengths,
17 CMP R3, #0 ;test for zero length if both are
18 BEQ Same ;zero length, nothing else to do
21 Loop
22 LDRB R5, [R0], #1 ;character of first string
23 LDRB R6, [R1], #1 ;character of second string
24 CMP R5, R6 ;are they the same
25 BNE Done ;if not the strings are different
26 SUBS R3, R3, #1 ;use the string length as a counter
27 BEQ Same ;if we got to the end of the count
28 ;the strings are the same
29 BAL Loop ;not done, loop
31 Same MOV R2, #0 ;clear the -1 from match (0 = match)
32 Done STR R2, Match ;store the result

Strings – p. 15/16

Program: cstrcmp.s

11 LDR R2, Match ;assume strings not equal – set to -1
12 LDR R3, [R0], #4 ;store the first string length in R3
13 LDR R4, [R1], #4 ;store the second string length in R4
14 CMP R3, R4
15 BNE Done ;if they are different lengths,
17 CMP R3, #0 ;test for zero length if both are
18 BEQ Same ;zero length, nothing else to do
21 Loop
22 LDRB R5, [R0], #1 ;character of first string
23 LDRB R6, [R1], #1 ;character of second string
24 CMP R5, R6 ;are they the same
25 BNE Done ;if not the strings are different
26 SUBS R3, R3, #1 ;use the string length as a counter
27 BEQ Same ;if we got to the end of the count
28 ;the strings are the same
29 BAL Loop ;not done, loop
31 Same MOV R2, #0 ;clear the -1 from match (0 = match)
32 Done STR R2, Match ;store the result

LDR Assume result is false
Strings – p. 15/16

Program: cstrcmp.s

11 LDR R2, Match ;assume strings not equal – set to -1
12 LDR R3, [R0], #4 ;store the first string length in R3
13 LDR R4, [R1], #4 ;store the second string length in R4
14 CMP R3, R4
15 BNE Done ;if they are different lengths,
17 CMP R3, #0 ;test for zero length if both are
18 BEQ Same ;zero length, nothing else to do
21 Loop
22 LDRB R5, [R0], #1 ;character of first string
23 LDRB R6, [R1], #1 ;character of second string
24 CMP R5, R6 ;are they the same
25 BNE Done ;if not the strings are different
26 SUBS R3, R3, #1 ;use the string length as a counter
27 BEQ Same ;if we got to the end of the count
28 ;the strings are the same
29 BAL Loop ;not done, loop
31 Same MOV R2, #0 ;clear the -1 from match (0 = match)
32 Done STR R2, Match ;store the result

#4 We are using counted strings with a 4-byte count
Strings – p. 15/16

Program: cstrcmp.s

11 LDR R2, Match ;assume strings not equal – set to -1
12 LDR R3, [R0], #4 ;store the first string length in R3
13 LDR R4, [R1], #4 ;store the second string length in R4
14 CMP R3, R4
15 BNE Done ;if they are different lengths,
17 CMP R3, #0 ;test for zero length if both are
18 BEQ Same ;zero length, nothing else to do
21 Loop
22 LDRB R5, [R0], #1 ;character of first string
23 LDRB R6, [R1], #1 ;character of second string
24 CMP R5, R6 ;are they the same
25 BNE Done ;if not the strings are different
26 SUBS R3, R3, #1 ;use the string length as a counter
27 BEQ Same ;if we got to the end of the count
28 ;the strings are the same
29 BAL Loop ;not done, loop
31 Same MOV R2, #0 ;clear the -1 from match (0 = match)
32 Done STR R2, Match ;store the result

BNE Abort if string lengths differ
Strings – p. 15/16

Program: cstrcmp.s

11 LDR R2, Match ;assume strings not equal – set to -1
12 LDR R3, [R0], #4 ;store the first string length in R3
13 LDR R4, [R1], #4 ;store the second string length in R4
14 CMP R3, R4
15 BNE Done ;if they are different lengths,
17 CMP R3, #0 ;test for zero length if both are
18 BEQ Same ;zero length, nothing else to do
21 Loop
22 LDRB R5, [R0], #1 ;character of first string
23 LDRB R6, [R1], #1 ;character of second string
24 CMP R5, R6 ;are they the same
25 BNE Done ;if not the strings are different
26 SUBS R3, R3, #1 ;use the string length as a counter
27 BEQ Same ;if we got to the end of the count
28 ;the strings are the same
29 BAL Loop ;not done, loop
31 Same MOV R2, #0 ;clear the -1 from match (0 = match)
32 Done STR R2, Match ;store the result

BEQ Abort if no string to compare
Strings – p. 15/16

Program: cstrcmp.s

11 LDR R2, Match ;assume strings not equal – set to -1
12 LDR R3, [R0], #4 ;store the first string length in R3
13 LDR R4, [R1], #4 ;store the second string length in R4
14 CMP R3, R4
15 BNE Done ;if they are different lengths,
17 CMP R3, #0 ;test for zero length if both are
18 BEQ Same ;zero length, nothing else to do
21 Loop
22 LDRB R5, [R0], #1 ;character of first string
23 LDRB R6, [R1], #1 ;character of second string
24 CMP R5, R6 ;are they the same
25 BNE Done ;if not the strings are different
26 SUBS R3, R3, #1 ;use the string length as a counter
27 BEQ Same ;if we got to the end of the count
28 ;the strings are the same
29 BAL Loop ;not done, loop
31 Same MOV R2, #0 ;clear the -1 from match (0 = match)
32 Done STR R2, Match ;store the result

BNE Exit on first difference found
Strings – p. 15/16

Program: cstrcmp.s

11 LDR R2, Match ;assume strings not equal – set to -1
12 LDR R3, [R0], #4 ;store the first string length in R3
13 LDR R4, [R1], #4 ;store the second string length in R4
14 CMP R3, R4
15 BNE Done ;if they are different lengths,
17 CMP R3, #0 ;test for zero length if both are
18 BEQ Same ;zero length, nothing else to do
21 Loop
22 LDRB R5, [R0], #1 ;character of first string
23 LDRB R6, [R1], #1 ;character of second string
24 CMP R5, R6 ;are they the same
25 BNE Done ;if not the strings are different
26 SUBS R3, R3, #1 ;use the string length as a counter
27 BEQ Same ;if we got to the end of the count
28 ;the strings are the same
29 BAL Loop ;not done, loop
31 Same MOV R2, #0 ;clear the -1 from match (0 = match)
32 Done STR R2, Match ;store the result

Number of registers used: R0, R1, R2, R3, R4, R5, R6
Strings – p. 15/16

Program: strcmp.s

9 LDR R0, =Data1 ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 ;init register
13 MOV R4, #0
14 Count1
15 LDRB R5, [R0], #1 ;load the first byte into R5
16 CMP R5, #0 ;is it the terminator
17 BEQ Count2 ;if not, Loop
18 ADD R3, R3, #1 ;increment count
19 BAL Count1
20 Count2
21 LDRB R5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 ;is it the terminator
23 BEQ Next ;if not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2

Strings – p. 16/16

Program: strcmp.s

9 LDR R0, =Data1 ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 ;init register
13 MOV R4, #0
14 Count1
15 LDRB R5, [R0], #1 ;load the first byte into R5
16 CMP R5, #0 ;is it the terminator
17 BEQ Count2 ;if not, Loop
18 ADD R3, R3, #1 ;increment count
19 BAL Count1
20 Count2
21 LDRB R5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 ;is it the terminator
23 BEQ Next ;if not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2

LDR Assume result is false

Strings – p. 16/16

Program: strcmp.s

9 LDR R0, =Data1 ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 ;init register
13 MOV R4, #0
14 Count1
15 LDRB R5, [R0], #1 ;load the first byte into R5
16 CMP R5, #0 ;is it the terminator
17 BEQ Count2 ;if not, Loop
18 ADD R3, R3, #1 ;increment count
19 BAL Count1
20 Count2
21 LDRB R5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 ;is it the terminator
23 BEQ Next ;if not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2

strlen(table1)
Calculate length of first string

Strings – p. 16/16

Program: strcmp.s

9 LDR R0, =Data1 ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 ;init register
13 MOV R4, #0
14 Count1
15 LDRB R5, [R0], #1 ;load the first byte into R5
16 CMP R5, #0 ;is it the terminator
17 BEQ Count2 ;if not, Loop
18 ADD R3, R3, #1 ;increment count
19 BAL Count1
20 Count2
21 LDRB R5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 ;is it the terminator
23 BEQ Next ;if not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2

strlen(table2)
Calculate length of second string

Strings – p. 16/16

Program: strcmp.s

9 LDR R0, =Data1 ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 ;init register
13 MOV R4, #0
14 Count1
15 LDRB R5, [R0], #1 ;load the first byte into R5
16 CMP R5, #0 ;is it the terminator
17 BEQ Count2 ;if not, Loop
18 ADD R3, R3, #1 ;increment count
19 BAL Count1
20 Count2
21 LDRB R5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 ;is it the terminator
23 BEQ Next ;if not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2

BEQ/ADD Conditional Execution:
ADDNE Rx, Rx, #1 ; inc string length

Strings – p. 16/16

Program: strcmp.s

9 LDR R0, =Data1 ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 ;init register
13 MOV R4, #0
14 Count1
15 LDRB R5, [R0], #1 ;load the first byte into R5
16 CMP R5, #0 ;is it the terminator
17 BEQ Count2 ;if not, Loop
18 ADD R3, R3, #1 ;increment count
19 BAL Count1
20 Count2
21 LDRB R5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 ;is it the terminator
23 BEQ Next ;if not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2

Compared to two LDR instructions in cstrcmp.s

Strings – p. 16/16

Program: strcmp.s

9 LDR R0, =Data1 ;load the address of the lookup table
10 LDR R1, =Data2
11 LDR R2, Match ;assume strings not equal, set to -1
12 MOV R3, #0 ;init register
13 MOV R4, #0
14 Count1
15 LDRB R5, [R0], #1 ;load the first byte into R5
16 CMP R5, #0 ;is it the terminator
17 BEQ Count2 ;if not, Loop
18 ADD R3, R3, #1 ;increment count
19 BAL Count1
20 Count2
21 LDRB R5, [R1], #1 ;load the first byte into R5
22 CMP R5, #0 ;is it the terminator
23 BEQ Next ;if not, Loop
24 ADD R4, R4, #1 ;increment count
25 BAL Count2

! Counted strings are easier to work with !
Strings – p. 16/16

	Systems Architecture
	Characters or Strings
	Fixed Length / Terminated Strings
	Counted Strings
	Program: strlencr.s
	Program: strlencr.s
	Program: strlencr.s
	Program: strlencr.s
	Program: strlencr.s

	Program: strlen.s
	Program: strlen.s
	Program: strlen.s
	Program: strlen.s

	Program: strlen.s (Revised)
	Program: strlen.s (Revised)
	Program: strlen.s (Revised)
	Program: strlen.s (Revised)

	Program: skipblanks.s
	Program: skipblanks.s
	Program: skipblanks.s
	Program: skipblanks.s
	Program: skipblanks.s

	Program: padzero.s
	Program: padzero.s
	Program: padzero.s
	Program: padzero.s
	Program: padzero.s

	Program: padzero.s (written in C)
	Program: padzero.s (written in C)

	Program: padzero.s (Revised)
	Program: setparity.s (Outer loop)
	Program: setparity.s (Outer loop)
	Program: setparity.s (Outer loop)
	Program: setparity.s (Outer loop)
	Program: setparity.s (Outer loop)

	Program: setparity.s (Inner loop)
	Program: setparity.s (Inner loop)
	Program: setparity.s (Inner loop)
	Program: setparity.s (Inner loop)
	Program: setparity.s (Inner loop)

	Program: setparity.s (Revised)
	Program: setparity.s (Revised)
	Program: setparity.s (Revised)
	Program: setparity.s (Revised)
	Program: setparity.s (Revised)
	Program: setparity.s (Revised)
	Program: setparity.s (Revised)

	Program: cstrcmp.s
	Program: cstrcmp.s
	Program: cstrcmp.s
	Program: cstrcmp.s
	Program: cstrcmp.s
	Program: cstrcmp.s
	Program: cstrcmp.s

	Program: strcmp.s
	Program: strcmp.s
	Program: strcmp.s
	Program: strcmp.s
	Program: strcmp.s
	Program: strcmp.s
	Program: strcmp.s

