
Systems Architecture

ARM Assembler

Structure / Loops
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Loops

• Four parts to any loop
i) initialisation 〈init〉

ii) body 〈body〉

iii) increment or 〈inc〉
decrement 〈dec〉

iv) exit condition 〈cond〉

• Three basic types of loop
i) Repeat . . . Until

ii) While

iii) Counted
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The Repeat . . . Until Loop

• Exit condition tested at end of loop

• Loop is executed at least once

Pseudocode:

〈init〉
Repeat

〈body〉
〈inc〉/〈dec〉

Until 〈cond〉
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The Repeat . . . Until Loop

• Exit condition tested at end of loop

• Loop is executed at least once

Pseudocode: C:

〈init〉 〈init〉;
Repeat do {

〈body〉 〈body〉;
〈inc〉/〈dec〉 〈inc〉/〈dec〉;

Until 〈cond〉 } while (〈cond〉);
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The Repeat . . . Until Loop

• Exit condition tested at end of loop

• Loop is executed at least once

Pseudocode: C: Assembler:

〈init〉 〈init〉; 〈init〉
Repeat do { label 〈body〉

〈body〉 〈body〉; 〈inc〉/〈dec〉
〈inc〉/〈dec〉 〈inc〉/〈dec〉; 〈cond〉

Until 〈cond〉 } while (〈cond〉); B〈cc〉 label
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The While Loop

• Exit condition tested at start of loop

• Loop may never be executed (zero or more times)

Pseudocode:

〈init〉
While 〈cond〉

〈body〉
〈inc〉/〈dec〉

End While
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The While Loop

• Exit condition tested at start of loop

• Loop may never be executed (zero or more times)

Pseudocode: C:

〈init〉 〈init〉;
While 〈cond〉 while (〈cond〉) {

〈body〉 〈body〉;
〈inc〉/〈dec〉 〈inc〉/〈dec〉;

End While }
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The While Loop

• Exit condition tested at start of loop

• Loop may never be executed (zero or more times)

Pseudocode: C: Assembler:

〈init〉 〈init〉; 〈init〉
While 〈cond〉 while (〈cond〉) { label1 〈cond〉

〈body〉 〈body〉; B〈cc〉 label2
〈inc〉/〈dec〉 〈inc〉/〈dec〉; 〈body〉

End While } 〈inc〉/〈dec〉
BAL label1

label2 . . .
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The Counted Loop

Up Counting Down Counting

• Pseudocode:
For 〈init〉 up to 〈cond〉 For 〈init〉 down to 〈cond〉

〈body〉 〈body〉
Next Next
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The Counted Loop

Up Counting Down Counting

• Pseudocode:
For 〈init〉 up to 〈cond〉 For 〈init〉 down to 〈cond〉

〈body〉 〈body〉
Next Next

• C:
for (〈init〉; 〈cond〉; 〈inc〉) { for (〈init〉; 〈cond〉; 〈dec〉) {

〈body〉; 〈body〉;
} }
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The Counted Loop

Up Counting Down Counting

• Pseudocode:
For 〈init〉 up to 〈cond〉 For 〈init〉 down to 〈cond〉

〈body〉 〈body〉
Next Next

• C:
for (〈init〉; 〈cond〉; 〈inc〉) { for (〈init〉; 〈cond〉; 〈dec〉) {

〈body〉; 〈body〉;
} }

• Assembler:
〈init〉

label 〈body〉
〈inc〉
〈cond〉
B〈cc〉 label

〈init〉
label 〈body〉

〈dec〉
〈cond〉
B〈cc〉 label
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Up or Down Counter

• Zero is easy to detect
• When counting down we can merge the decrement

and 〈cond〉 code into a single subs instruction.

Up Counting Down Counting

LDR R0, =Table LDR R0, =Table

MOV R1, #0 MOV R1, #0

MOV R2, #0 MOV R2, #10

Loop LDRB R3, [R0] Loop LDRB R3, [R0]

ADD R1, R1, R3 ADD R1, R1, R3

ADD R0, R0, #1 ADD R0, R0, #1

ADD R2, R2, #1 SUBS R2, R2, #1

CMP R2, #10 BNE Loop

BLT Loop
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Up or Down Counter

• Zero is easy to detect
• When counting down we can merge the decrement

and 〈cond〉 code into a single subs instruction.

Up Counting Down Counting

LDR R0, =Table LDR R0, =Table

MOV R1, #0 MOV R1, #0

MOV R2, #0 MOV R2, #10

Loop LDRB R3, [R0] Loop LDRB R3, [R0]

ADD R1, R1, R3 ADD R1, R1, R3

ADD R0, R0, #1 ADD R0, R0, #1

ADD R2, R2, #1 SUBS R2, R2, #1

CMP R2, #10 BNE Loop

BLT Loop
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Up or Down Counter

• Zero is easy to detect
• When counting down we can merge the decrement

and 〈cond〉 code into a single subs instruction.

Up Counting Down Counting

LDR R0, =Table LDR R0, =Table

MOV R1, #0 MOV R1, #0

MOV R2, #0 MOV R2, #10

Loop LDRB R3, [R0] Loop LDRB R3, [R0]

ADD R1, R1, R3 ADD R1, R1, R3

ADD R0, R0, #1 ADD R0, R0, #1

ADD R2, R2, #1 SUBS R2, R2, #1

CMP R2, #10 BNE Loop

BLT Loop
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Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

Structure / Loops – p. 7/12



Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

EOR Quick way of setting R1 to zero
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Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

Loop Label the next instruction
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Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

ADD Move pointer (R0) to next word
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Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

LDR/ADD Using Post-index addressing we can remove the ADD:
LDR R3, [R0], #4
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Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

SUBS Subtract and set flags
Decrement loop counter, R2
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Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

BNE Branch to Loop if counter is not equal to zero
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Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

DCW Assembler will calculate the length of data table for me
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Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11
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Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

EOR Quick way of setting R1 to zero
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Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

CMP Is table length zero?
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Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

BEQ Skip zero length tables
Protects from processing an empty list
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Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

LDR/ADD Using Post-index addressing we can remove the ADD:
LDR R3, [R0], #4
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Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

SUBS/BNE Decrement counter and branch to Loop if not zero
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Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align
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Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

CMP/BEQ Skip zero length tables
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Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

BPL Brach if positive (plus)
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Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

BPL/ADD Using Conditional Execution we can write:
ADDMI R1, R1, #1 ;inc -ve count if -ve
This would be faster, as it does not flush the pipeline
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Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

LDR/ADD Move to next word, can be merged into one:
LDR R3, [R0], #4 ; get next value
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Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

SUBS/BNE Decrement counter and branch to Loop if not zero
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Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

DCW Assembler will calculate the length of data table
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Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop
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Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

TEQ Test R2 for 0
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Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

TEQ/BEQ Protect loop from zero length tables
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Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

AND Clear all but halfword sign
Reset lower 15 bits
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Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

CMP Is halfword sign bit (bit 15) set (negative)
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Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

BNE Skip to Looptest if value is positive
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Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

SUBS/BNE Using subtract and set to automatically detect zero
Branch to Loop if counter is not zero
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Program: countneg16.s (Revised)

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

LDR/ADD By using Post-Index addressing we can write:
LDR R3, [R0], #4 ; read data and move on
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Program: countneg16.s (Revised)

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

AND/CMP Using the “Set” option we can combine these into:
ANDS R3, R3, #0x8000
Zero flag is set if R3 is positive
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Program: countneg16.s (Revised)

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

BEQ/ADD Using conditional execution we can avoid the branch:
ADDEQ R1, R1, #1 ; Inc counter if -ve
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Program: countneg16.s (Revised)

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

LDRSH If we could use LDRSH this would be as simple
as countnet.s – but we can’t
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Program: countneg16.s (Revised)

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0], #4 ;get the data
16 ANDS R3, R3, #0x8000 ;is halfword sign set
17
18
19 ADDNE R1, R1, #1 ;increment -ve number count
20
21
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

Structure / Loops – p. 10/12



Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done
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Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

EOR Quick way of setting R1 to zero
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Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

CMP/BEQ Protect loop from empty list (zero length)
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Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

CMP Compare new value (R3) against current largest (R1)
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Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

BLS Branch if new is less than or same as current
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Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

SUBS/BNE Using subtract to automatically detect zero
Branch to Loop if counter is not zero
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Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

LDR/ADD With Post-Index addressing we can write:
LDR R3, [R0], #4 ; read data and move on
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Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

BLS/ADD Using conditional execution we can avoid the branch:
MOVGT R1, R3 ; Save new current largest
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Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

Structure / Loops – p. 12/12



Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

EOR Quick way of setting R1 to zero
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Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

CMP/BEQ Protect from zero entry
Otherwise we will enter a never ending loop
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Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

ADD Increment shift counter
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Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

MOVS/LSL Shift value up by one bit and set flags
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Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

BPL Repeat until upper bit (sign bit) is positive

Structure / Loops – p. 12/12
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