Systems Architecture

ARM Assembler

Structure / Loops




e Four parts to any loop
) Initialisation '

i) body

<

<
i) Increment or {(Inc)

decrement (
Iv) exit condition (

e Three basic types of loop
) Repeat...Until

i) While
i) Counted




-The Repeat ... Until Loop

Pseudocode:

(Init)

Repeat
(body)
(inc)/{dec)

Until (cond)

Exit condition tested at end of loop

Loop Is executed at least once
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-The Repeat ... Until Loop

Pseudocode:

(Init)

Repeat
(body)
(inc)/{dec)

Until (cond)

Exit condition tested at end of loop

Loop Is executed at least once

C:

(Init);

do {
(body);
(inc)/{dec);

} while ((cond));




e EXit condition tested at end of loop

e Loop is executed at least once

Pseudocode: C. Assembler:

(Init) (Init); (Init)

Repeat do { label (body)
(body) (body); (inc)/{dec)
(inc)/{dec) (inc)/{dec); (cond)

Until (cond) } while ((cond)); B(cc) label




'The While Loop

e EXxit condition tested at start of loop

e Loop may never be executed (zero or more times)

Pseudocode:

(Init)

While (cond)
(body)
(inc)/{dec)

End While
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'The While Loop

e EXxit condition tested at start of loop

e Loop may never be executed (zero or more times)

Pseudocode: C:

(init) (Init);

While (cond) whi | e ({(cond)) {
(body) (body);
(inc)/{dec) (inc)/{dec);

End While }




'The While Loop

e EXxit condition tested at start of loop

e Loop may never be executed (zero or more times)

Pseudocode: C. Assembler:
(Init) (nit); (Init)
While (cond) while ({(cond)) { Ilabell (cond)

(body) (body); B(cc) label2
(inc)/{dec) (inc)/{dec); (body)
End While } (inc)/{dec)
BAL labell

label2




-The Counted Loop

Up Counting Down Counting
e Pseudocode:
For (init) up to (cond) For (init) down to (cond)
(body) (body)

Next Next
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-The Counted Loop

Up Counting

Pseudocode:

For (init) up to (cond)
(body)

Next

C.

for ((init); (cond); (inc)) {
(body);

}

Down Counting

For (init) down to (cond)
(body)
Next

for ((init); (cond); (dec)) {
(body);
}
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Pseudocode:
For (init) up to (cond)

(body)

Next
C:

-The Counted Loop

Up Counting

for ((init);
(body);

}

Assembler:

label

(init)

(cond);

<body>

nc)

(cond)
B(cC

(C

c) label

(nc)) {

For (init) down to (cond)

(body)
Next
for ((init); (cond);
(body);
}
(init)
label (body)
(dec)
(cond)
B(cc) label

Down Counting

(dec)) {
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Zero Is easy to detect
When counting down we can merge the decrement
and (cond) code into a single subs Instruction.

Up Counting Down Counting

LDR RO, =Table LDR RO, =Table

MOV  Rl, #O MOV  Rl, #0

MOV  R2, #O MOV  R2, #10
Loop LDRB R3, [RO] Loop LDRB R3, [RO]

ADD R1l, R1, R3 ADD R1, Rl, R3

ADD RO, RO, #1 ADD R0, RO, #1

ADD R?, R2, #1 SUBS R2, R2, #1

CvP R2, #10 BNE Loop
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Zero Is easy to detect
When counting down we can merge the decrement
and (cond) code into a single subs Instruction.

Up Counting Down Counting

LDR RO, =Table LDR RO, =Table

MOV  Rl, #O MOV  Rl, #0

MOV  R2, #O MOV  R2, #10
Loop LDRB R3, [ RO] Loop LDRB R3, [ RO]

ADD R1, Rl, R3 ADD R1, Rl, R3

ADD R0, RO, #1 ADD R0, RO, #1

ADD R2, R2, #1 SUBS R2, R2, #1

CvP R2, #10 BNE Loop
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Zero Is easy to detect
When counting down we can merge the decrement
and (cond) code into a single subs Instruction.

Up Counting Down Counting

LDR RO, =Table LDR RO, =Table

MOV  Rl, #O MOV  Rl, #0

MOV  R2, #O MOV R2, #10
Loop LDRB R3, [ RO] Loop LDRB R3, [ RO]

ADD R1, Rl, R3 ADD R1, Rl, R3

ADD R0, RO, #1 ADD R0, RO, #1

ADD R2, R2, #1 SUBS R2, R2, #1

CVP R2, #10 BNE Loop

Structure / Loops — p. 6/12



%

Main
LDR
EOR
LDR
Loop
LDR
ADD
ADD
SUBS
BNE

Table DCW
DCW
TablEnd DCD

Length DCW

"~ Program: sum16.s
e

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store sum
R2, Length ;init element count

R3, [RO] ,get the data

R1,R1, R3 addittorl

RO, RO, #+4 ;increment pointer

R2, R2, #1 decrement count with zero set

Loop iIf zero flag is not set, loop
&2040 ;table of values to be added
&1C22

0

(TablEnd - Table) / 4 ;because we’re having to align
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¥

_Program: sum16.s
1 e

7 Main
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum
10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [RO] ,get the data
13 ADD R1,R1,R3 ;addittorl
14 ADD RO, RO, #+4 ;increment pointer
15 SUBS R2,R2,#1 ,decrement count with zero set
16 BNE Loop iIf zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD O
29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align
EOR Quick way of setting R1 to zero
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¥

_Program: sum16.s
1 e

7 Main
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum
10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [RO] ,get the data
13 ADD R1,R1,R3 ;addittorl
14 ADD RO, RO, #+4 ;increment pointer
15 SUBS R2,R2,#1 ,decrement count with zero set
16 BNE Loop iIf zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD O
29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align

Loop Label the next instruction
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¥

_Program: sum16.s
1 e

7 Main
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum
10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [RO] ,get the data
13 ADD R1,R1,R3 ;addittorl
14 ADD RO, RO, #+4 ;increment pointer
15 SUBS R2,R2,#1 ,decrement count with zero set
16 BNE Loop iIf zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD O
29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align
ADD Move pointer (R0O) to next word
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Prog ram: sum1l6.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ,decrement count with zero set

16 BNE Loop If zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEnd DCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align

LDR/ADD Using Post-index addressing we can remove the ADD:
LDR R3, [RO], #4
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Prog ram: sum1l6.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2, R2,#1 ;decrement count with zero set

16 BNE Loop iIf zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEnd DCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align

SUBS Subtract and set flags

Decrement loop counter, R2
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Prog ram: sum1l6.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ,decrement count with zero set

16 BNE Loop If zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEnd DCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align

BNE Branch to Loop if counter is not equal to zero
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Prog ram: sum1l6.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ,decrement count with zero set

16 BNE Loop iIf zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEnd DCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

DCW Assembler will calculate the length of data table for me
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“Pro ram: sumleb.s
e

Done

LDR
EOR
LDR
CMP
BEQ

LDR
ADD
ADD
SUBS
BNE

STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store sum
R2, Length ;init element count

R2, #0 ;zero length table ?
Done ,yes => skip over sum loop
R3, [RO] ;get the data that RO points to

R1, R1,R3 ;additto R1

RO, RO, #+4 ;increment pointer

R2, R2, #0x1 ;decrement count with zero set
Loop If zero flag is not set, loop

R1, Result :otherwise done - store result
&11
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10
11
12
13
14
15
16
17
18
19
20
21
22

EOR

~_Program: sum16b.s
1 A

Loop

Done

LDR
EOR
LDR
CMP
BEQ

LDR
ADD
ADD
SUBS
BNE

STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store sum
R2, Length ;init element count

R2, #0 ;zero length table ?
Done ,yes => skip over sum loop
R3, [RO] ;get the data that RO points to

R1, R1,R3 ;additto R1

RO, RO, #+4 ;increment pointer

R2, R2, #0x1 ;decrement count with zero set
Loop iIf zero flag is not set, loop

R1, Result :otherwise done - store result
&11

Quick way of setting R1 to zero
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10
11
12
13
14
15
16
17
18
19
20
21
22

CMP

~_Program: sum16b.s
1 A

Loop

Done

LDR
EOR
LDR
CMP
BEQ

LDR
ADD
ADD
SUBS
BNE

STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store sum
R2, Length ;init element count

R2, #0 ,zero length table ?
Done ,yes => skip over sum loop
R3, [RO] ;get the data that RO points to

R1, R1,R3 ;additto R1

RO, RO, #+4 ;increment pointer

R2, R2, #0x1 ;decrement count with zero set
Loop iIf zero flag is not set, loop

R1, Result :otherwise done - store result
&11

Is table length zero?
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Prog ram: sum16b.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1,R1,R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2,#0 ;zero length table ?
13 BEQ Done ,yes => skip over sum loop
14 Loop
15 LDR R3, [RO] ;get the data that RO points to
16 ADD R1,R1,R3 addittoR1
17 ADD RO, RO, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop iIf zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11
BEQ Skip zero length tables

Protects from processing an empty list
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Prog ram: sum16b.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1,R1,R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2,#0 ;zero length table ?
13 BEQ Done ,yes => skip over sum loop
14 Loop
15 LDR R3, [RO] ;get the data that RO points to
16 ADD R1,R1,R3 addittoR1
17 ADD RO, RO, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop If zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11
LDR/ADD Using Post-index addressing we can remove the ADD:

LDR R3, [RO], #4
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Program: suml16b.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1,R1,R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2,#0 ;zero length table ?
13 BEQ Done ,yes => skip over sum loop
14 Loop
15 LDR R3, [RO] ;get the data that RO points to
16 ADD R1,R1,R3 ;addittoR1
17 ADD RO, RO, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop iIf zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

SUBS/BNE Decrement counter and branch to Loop if not zero
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¥

LDR
CMP
BEQ
Loop
LDR
CMP
BPL
ADD
Looptest
ADD
SUBS
BNE

Table DCD
TablEnd DCD
Length DCW

“Program: countneg.s
iy 4

R2, Length ;init element count

R2, #0 IS table empty

Done ;yes => skip loop

R3, [RO] ,get the data

R3, #0 IS it positive?
Looptest ;yes => skip next line

R1, R1, #1 :increment -ve number count

RO, RO, #+4 ;increment pointer
R2, R2, #0x1 ;decrement count with zero set
Loop ;until count is zero

&F1522040 ;table of values to be added
0
(TablEnd - Table) / 4 ;because we’re having to align
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27
28
31
34

Program: countneg.s

LDR R2, Length ;init element count

CMP R2,#0 IS table empty

BEQ Done ;yes => skip loop
Loop

LDR R3, [RO] ,get the data

CMP R3,#0 IS it positive?

BPL Looptest ;yes => skip next line

ADD R1,R1,#1 ;increment-ve number count
Looptest

ADD RO, RO, #+4 ;increment pointer
SUBS R2, R2, #0x1 ;decrement count with zero set
BNE Loop ;until count is zero

Table DCD  &F1522040 ;table of values to be added
TablEnd DCD O
Length DCW (TablEnd - Table) / 4 ;because we’re having to align

CMP/BEQ Skip zero length tables
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Program: countneg.s

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS table empty

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3, #0 IS it positive?

16 BPL Looptest ;yes => skip next line

17 ADD R1,R1,#1 ;increment-ve number count
18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero

27

28 Table DCD  &F1522040 ;table of values to be added
31 TablEnd DCD O
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

BPL Brach if positive (plus)
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--",Program: countneg.s

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS table empty

12 BEQ Done ,yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,#0 IS it positive?

16 BPL Looptest ;yes => skip next line

17 ADD R1,R1,#1 ;increment-ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop ;until count is zero

27

28 Table DCD  &F1522040 ;table of values to be added

31 TablEnd DCD O

34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align
BPL/ADD Using Conditional Execution we can write:

ADDM R1, Rl1, #1 ;inc -ve count if -ve
This would be faster, as it does not flush the pipeline
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Program: countneg.s

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS table empty

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,#0 IS it positive?

16 BPL Looptest ;yes => skip next line

17 ADD R1,R1,#1 ;increment-ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop ;until count is zero

27

28 Table DCD  &F1522040 ;table of values to be added

31 TablEnd DCD O

34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align
LDR/ADD Move to next word, can be merged into one:

LDR R3, [RO], #4 ; get next val ue
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27
28
31
34

Program: countneg.s

LDR R2, Length ;init element count

CMP R2,#0 IS table empty

BEQ Done ;yes => skip loop
Loop

LDR R3, [RO] ,get the data

CMP R3,#0 IS it positive?

BPL Looptest ;yes => skip next line

ADD R1,R1,#1 ;increment-ve number count
Looptest

ADD RO, RO, #+4 ;increment pointer
SUBS R2, R2, #0x1 ;decrement count with zero set
BNE Loop ;until count is zero

Table DCD  &F1522040 ;table of values to be added
TablEnd DCD O
Length DCW (TablEnd - Table) / 4 ;because we’re having to align

SUBS/BNE Decrement counter and branch to Loop if not zero
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Program: countneg.s

LDR R2, Length ;init element count

CMP R2,#0 IS table empty

BEQ Done ;yes => skip loop
Loop

LDR R3, [RO] ,get the data

CMP R3, #0 IS it positive?

BPL Looptest ;yes => skip next line

ADD R1,R1,#1 ;increment-ve number count
Looptest

ADD RO, RO, #+4 ;increment pointer
SUBS R2, R2, #0x1 ;decrement count with zero set
BNE Loop ;until count is zero

Table DCD  &F1522040 ;table of values to be added
TablEnd DCD O
Length DCW (TablEnd - Table) / 4 ;because we’re having to align

Assembler will calculate the length of data table
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_Program: countneg16.s
/" °

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1, R1, R1 ,clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 IS count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [RO] ,get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 bitis 1
18 BNE Looptest ;Skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD RO, RO, #+4 ,increment pointer
22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop iIf zero flag is not set, loop
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Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1, R1, R1 ,clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;IS count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [RO] ,get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 bitis 1
18 BNE Looptest ;Skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD RO, RO, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;,decrement count with zero set
23 BNE Loop If zero flag is not set, loop

TEQ Test R2 for O
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Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1, R1, R1 ,clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;IS count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [RO] ,get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 bitis 1
18 BNE Looptest ;Skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD RO, RO, #+4 ,increment pointer
22 SUBS R2, R2, #0x1 ;,decrement count with zero set
23 BNE Loop If zero flag is not set, loop

TEQ/BEQ Protect loop from zero length tables
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Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ;increment pointer

22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop If zero flag is not set, loop
AND Clear all but halfword sign

Reset lower 15 bits
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Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1, R1, R1 ,clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 IS count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [RO] ,get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 bitis 1
18 BNE Looptest ;Skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD RO, RO, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;,decrement count with zero set
23 BNE Loop If zero flag is not set, loop

CMP Is halfword sign bit (bit 15) set (negative)
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Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1, R1, R1 ,clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 IS count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [RO] ,get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 bitis 1
18 BNE Looptest ;Skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD RO, RO, #+4 ,increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop If zero flag is not set, loop

BNE Skip to Looptest if value is positive
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Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ;increment pointer

22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop If zero flag is not set, loop
SUBS/BNE Using subtract and set to automatically detect zero

Branch to Loop if counter is not zero

Structure / Loops — p. 10/12




Program: countnegl6.s (Revised)

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ,increment pointer

22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop If zero flag is not set, loop
LDR/ADD By using Post-Index addressing we can write:

LDR R3, [RO], #4 ; read data and nobve on
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Program: countnegl6.s (Revised)

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ;increment pointer

22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop If zero flag is not set, loop
AND/CMP Using the “Set” option we can combine these into:

ANDS R3, R3, #0x8000
Zero flag is set if R3 is positive
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Program: countnegl6.s (Revised)

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ,increment pointer

22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop If zero flag is not set, loop
BEQ/ADD Using conditional execution we can avoid the branch:

ADDEQ R1, Rl1, #1 ; Inc counter If -ve
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Program: countnegl6.s (Revised)

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ,increment pointer

22 SUBS R2, R2, #0x1 ;decrement count with zero set

23 BNE Loop If zero flag is not set, loop
LDRSH If we could use LDRSH this would be as simple

as countnet.s — but we can’t
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Loop

Program: countnegl6.s (Revised)

LDR
EOR
LDR
TEQ
BEQ

LDR
ANDS

ADDNE

SUBS
BNE

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ,clear R1 to store count

R2, Length ;init element count

R2, #0 ;IS count zero?

Done ,yes => skip loop

R3, [RO], #4 ,get the data
R3, R3, #0x8000 ;is halfword sign set

R1, R1, #1 ‘Increment -ve number count

R2, R2, #0x1 ‘decrement count with zero set
Loop If zero flag is not set, loop
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¥

Main

Loop

LDR
EOR
LDR
CMP
BEQ

LDR
CMP
BLS
MOV

Looptest

Done

ADD
SUBS
BNE

~_Program: largest16.s
o °

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store largest
R2, Length ;init element count

R2, #0 IS It an empty table

Done ;yes => skip loop

R3, [RO] ,get the data

R3, R1 ;,compare to largest
Looptest ;Skip next line if zero

R1, R3 ;increment -ve number count

RO, RO, #+4 ;increment pointer
R2, R2, #0x1 ;decrement count with zero set
Loop If zero flag is not set, loop
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7 Main

8 LDR
9 EOR
10 LDR
11 CMP
12 BEQ
13 Loop

14 LDR
15 CMP
16 BLS
17 MOV
18 Looptest
19 ADD
20 SUBS
21 BNE
22 Done

~_Program: largest16.s
o °

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store largest
R2, Length ;init element count

R2, #0 IS It an empty table

Done ;yes => skip loop

R3, [RO] ,get the data

R3, R1 ;,compare to largest
Looptest ;Skip next line if zero

R1, R3 ;increment -ve number count

RO, RO, #+4 ;increment pointer
R2, R2, #0x1 ;decrement count with zero set
Loop If zero flag is not set, loop

EOR Quick way of setting R1 to zero
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Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;Skip next line if zero

17 MOV R1,R3 ;increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

CMP/BEQ Protect loop from empty list (zero length)
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Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;Skip next line if zero

17 MOV R1,R3 ;increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

CMP Compare new value (R3) against current largest (R1)

Structure / Loops — p. 11/12




Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;SKip next line if zero

17 MOV R1,R3 ;increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

BLS Branch if new is less than or same as current
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Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;Skip next line if zero

17 MOV R1,R3 ,increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

SUBS/BNE Using subtract to automatically detect zero

Branch to Loop if counter is not zero
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Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;Skip next line if zero

17 MOV R1,R3 ;increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

LDR/ADD With Post-Index addressing we can write:

LDR R3, [RO], #4 ; read data and nove on
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Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;SKip next line if zero

17 MOV R1,R3 ;increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

BLS/ADD Using conditional execution we can avoid the branch:

MOVGI R1, R3 ; Save new current | argest
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sProgram: normalize.s
e 4

, normalize a binary number

Main

Loop

Done

LDR
EOR
LDR
CMP
BEQ

ADD
MOVS
BPL

STR
STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;,clear R1 to store shift count
R3, [RO] ,get the value to normalize

R3, R1 IS It a non-zero value

Done ,yes => already normalised

R1, R1, #1 ;increment shift counter

R3, R3, LSL #0x1 ;shift value by one bit

Loop ;loop until upper bit (sign bit) set
R1, Shifted ;otherwise done - store result
R3, Normal

&11 ;exit
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/7 =Program: normalize.s
iy 4

, normalize a binary number

Main

Loop

Done

LDR
EOR
LDR
CMP
BEQ

ADD
MOVS
BPL

STR
STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;,clear R1 to store shift count
R3, [RO] ,get the value to normalize

R3, R1 IS It a non-zero value

Done ,yes => already normalised

R1, R1, #1 ;increment shift counter

R3, R3, LSL #0x1 ;shift value by one bit

Loop ;loop until upper bit (sign bit) set
R1, Shifted ;otherwise done - store result
R3, Normal

&11 ;exit

Quick way of setting R1 to zero
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--"lProgram: normalize.s

1 ; normalize a binary number
2
/7 Main
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1, R1, R1 ;,clear R1 to store shift count
10 LDR R3, [RO] ,get the value to normalize
11 CMP R3, R1 IS It a non-zero value
12 BEQ Done ,yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit
CMP/BEQ Protect from zero entry

Otherwise we will enter a never ending loop
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/7 =Program: normalize.s
iy 4

1 ; normalize a binary number
2
/7 Main
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1, R1, R1 ;,clear R1 to store shift count
10 LDR R3, [RO] ,get the value to normalize
11 CMP R3, R1 IS It a non-zero value
12 BEQ Done ,yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

ADD Increment shift counter
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17
18
19
20

/7 =Program: normalize.s
iy 4

, normalize a binary number

Main

Loop

Done

MOVS/LSL

LDR
EOR
LDR
CMP
BEQ

ADD
MOVS
BPL

STR
STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;,clear R1 to store shift count
R3, [RO] ,get the value to normalize

R3, R1 IS It a non-zero value

Done ,yes => already normalised

R1, R1, #1 ;increment shift counter

R3, R3, LSL #0x1 ;shift value by one bit

Loop ;loop until upper bit (sign bit) set
R1, Shifted ;otherwise done - store result
R3, Normal

&11 ;exit

Shift value up by one bit and set flags
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--""Program: normalize.s

, normalize a binary number

Main

Loop

Done

LDR
EOR
LDR
CMP
BEQ

ADD
MOVS
BPL

STR
STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;,clear R1 to store shift count
R3, [RO] ,get the value to normalize

R3, R1 IS It a non-zero value

Done ,yes => already normalised

R1, R1, #1 ;increment shift counter

R3, R3, LSL #0x1 ;shift value by one bit

Loop ;loop until upper bit (sign bit) set
R1, Shifted ;otherwise done - store result
R3, Normal

&11 ;exit

Repeat until upper bit (sign bit) is positive
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