Systems Architecture

ARM Assembler

Structure / Loops

e Four parts to any loop
) Initialisation '

i) body

<

<
i) Increment or {(Inc)

decrement (
Iv) exit condition (

e Three basic types of loop
) Repeat...Until

i) While
i) Counted

-The Repeat ... Until Loop

Pseudocode:

(Init)

Repeat
(body)
(inc)/{dec)

Until (cond)

Exit condition tested at end of loop

Loop Is executed at least once

Structure / Loops — p. 3/12

-The Repeat ... Until Loop

Pseudocode:

(Init)

Repeat
(body)
(inc)/{dec)

Until (cond)

Exit condition tested at end of loop

Loop Is executed at least once

C:

(Init);

do {
(body);
(inc)/{dec);

} while ((cond));

e EXit condition tested at end of loop

e Loop is executed at least once

Pseudocode: C. Assembler:

(Init) (Init); (Init)

Repeat do { label (body)
(body) (body); (inc)/{dec)
(inc)/{dec) (inc)/{dec); (cond)

Until (cond) } while ((cond)); B(cc) label

'The While Loop

e EXxit condition tested at start of loop

e Loop may never be executed (zero or more times)

Pseudocode:

(Init)

While (cond)
(body)
(inc)/{dec)

End While

Structure / Loops — p. 4/12

'The While Loop

e EXxit condition tested at start of loop

e Loop may never be executed (zero or more times)

Pseudocode: C:

(init) (Init);

While (cond) whi | e ({(cond)) {
(body) (body);
(inc)/{dec) (inc)/{dec);

End While }

'The While Loop

e EXxit condition tested at start of loop

e Loop may never be executed (zero or more times)

Pseudocode: C. Assembler:
(Init) (nit); (Init)
While (cond) while ({(cond)) { Ilabell (cond)

(body) (body); B(cc) label2
(inc)/{dec) (inc)/{dec); (body)
End While } (inc)/{dec)
BAL labell

label2

-The Counted Loop

Up Counting Down Counting
e Pseudocode:
For (init) up to (cond) For (init) down to (cond)
(body) (body)

Next Next

Structure / Loops — p. 5/12

-The Counted Loop

Up Counting

Pseudocode:

For (init) up to (cond)
(body)

Next

C.

for ((init); (cond); (inc)) {
(body);

}

Down Counting

For (init) down to (cond)
(body)
Next

for ((init); (cond); (dec)) {
(body);
}

Structure / Loops — p. 5/12

Pseudocode:
For (init) up to (cond)

(body)

Next
C:

-The Counted Loop

Up Counting

for ((init);
(body);

}

Assembler:

label

(init)

(cond);

<body>

nc)

(cond)
B(cC

(C

c) label

(nc)) {

For (init) down to (cond)

(body)
Next
for ((init); (cond);
(body);
}
(init)
label (body)
(dec)
(cond)
B(cc) label

Down Counting

(dec)) {

Structure

/ Loops — p. 5/12

Zero Is easy to detect
When counting down we can merge the decrement
and (cond) code into a single subs Instruction.

Up Counting Down Counting

LDR RO, =Table LDR RO, =Table

MOV Rl, #O MOV Rl, #0

MOV R2, #O MOV R2, #10
Loop LDRB R3, [RO] Loop LDRB R3, [RO]

ADD R1l, R1, R3 ADD R1, Rl, R3

ADD RO, RO, #1 ADD R0, RO, #1

ADD R?, R2, #1 SUBS R2, R2, #1

CvP R2, #10 BNE Loop

Structure / Loops — p. 6/12

Zero Is easy to detect
When counting down we can merge the decrement
and (cond) code into a single subs Instruction.

Up Counting Down Counting

LDR RO, =Table LDR RO, =Table

MOV Rl, #O MOV Rl, #0

MOV R2, #O MOV R2, #10
Loop LDRB R3, [RO] Loop LDRB R3, [RO]

ADD R1, Rl, R3 ADD R1, Rl, R3

ADD R0, RO, #1 ADD R0, RO, #1

ADD R2, R2, #1 SUBS R2, R2, #1

CvP R2, #10 BNE Loop

Structure / Loops — p. 6/12

Zero Is easy to detect
When counting down we can merge the decrement
and (cond) code into a single subs Instruction.

Up Counting Down Counting

LDR RO, =Table LDR RO, =Table

MOV Rl, #O MOV Rl, #0

MOV R2, #O MOV R2, #10
Loop LDRB R3, [RO] Loop LDRB R3, [RO]

ADD R1, Rl, R3 ADD R1, Rl, R3

ADD R0, RO, #1 ADD R0, RO, #1

ADD R2, R2, #1 SUBS R2, R2, #1

CVP R2, #10 BNE Loop

Structure / Loops — p. 6/12

%

Main
LDR
EOR
LDR
Loop
LDR
ADD
ADD
SUBS
BNE

Table DCW
DCW
TablEnd DCD

Length DCW

"~ Program: sum16.s
e

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store sum
R2, Length ;init element count

R3, [RO] ,get the data

R1,R1, R3 addittorl

RO, RO, #+4 ;increment pointer

R2, R2, #1 decrement count with zero set

Loop iIf zero flag is not set, loop
&2040 ;table of values to be added
&1C22

0

(TablEnd - Table) / 4 ;because we’re having to align

Structure / Loops — p. 7/12

¥

_Program: sum16.s
1 e

7 Main
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum
10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [RO] ,get the data
13 ADD R1,R1,R3 ;addittorl
14 ADD RO, RO, #+4 ;increment pointer
15 SUBS R2,R2,#1 ,decrement count with zero set
16 BNE Loop iIf zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD O
29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align
EOR Quick way of setting R1 to zero

Structure / Loops — p. 7/12

¥

_Program: sum16.s
1 e

7 Main
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum
10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [RO] ,get the data
13 ADD R1,R1,R3 ;addittorl
14 ADD RO, RO, #+4 ;increment pointer
15 SUBS R2,R2,#1 ,decrement count with zero set
16 BNE Loop iIf zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD O
29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align

Loop Label the next instruction

Structure / Loops — p. 7/12

¥

_Program: sum16.s
1 e

7 Main
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum
10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [RO] ,get the data
13 ADD R1,R1,R3 ;addittorl
14 ADD RO, RO, #+4 ;increment pointer
15 SUBS R2,R2,#1 ,decrement count with zero set
16 BNE Loop iIf zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD O
29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align
ADD Move pointer (R0O) to next word

Structure / Loops — p. 7/12

Prog ram: sum1l6.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ,decrement count with zero set

16 BNE Loop If zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEnd DCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align

LDR/ADD Using Post-index addressing we can remove the ADD:
LDR R3, [RO], #4

Structure / Loops — p. 7/12

Prog ram: sum1l6.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2, R2,#1 ;decrement count with zero set

16 BNE Loop iIf zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEnd DCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align

SUBS Subtract and set flags

Decrement loop counter, R2

Structure / Loops — p. 7/12

Prog ram: sum1l6.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ,decrement count with zero set

16 BNE Loop If zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEnd DCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we're having to align

BNE Branch to Loop if counter is not equal to zero

Structure / Loops — p. 7/12

Prog ram: sum1l6.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ,decrement count with zero set

16 BNE Loop iIf zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEnd DCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

DCW Assembler will calculate the length of data table for me

Structure / Loops — p. 7/12

“Pro ram: sumleb.s
e

Done

LDR
EOR
LDR
CMP
BEQ

LDR
ADD
ADD
SUBS
BNE

STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store sum
R2, Length ;init element count

R2, #0 ;zero length table ?
Done ,yes => skip over sum loop
R3, [RO] ;get the data that RO points to

R1, R1,R3 ;additto R1

RO, RO, #+4 ;increment pointer

R2, R2, #0x1 ;decrement count with zero set
Loop If zero flag is not set, loop

R1, Result :otherwise done - store result
&11

Structure / Loops — p. 8/12

10
11
12
13
14
15
16
17
18
19
20
21
22

EOR

~_Program: sum16b.s
1 A

Loop

Done

LDR
EOR
LDR
CMP
BEQ

LDR
ADD
ADD
SUBS
BNE

STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store sum
R2, Length ;init element count

R2, #0 ;zero length table ?
Done ,yes => skip over sum loop
R3, [RO] ;get the data that RO points to

R1, R1,R3 ;additto R1

RO, RO, #+4 ;increment pointer

R2, R2, #0x1 ;decrement count with zero set
Loop iIf zero flag is not set, loop

R1, Result :otherwise done - store result
&11

Quick way of setting R1 to zero

Structure / Loops — p. 8/12

10
11
12
13
14
15
16
17
18
19
20
21
22

CMP

~_Program: sum16b.s
1 A

Loop

Done

LDR
EOR
LDR
CMP
BEQ

LDR
ADD
ADD
SUBS
BNE

STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store sum
R2, Length ;init element count

R2, #0 ,zero length table ?
Done ,yes => skip over sum loop
R3, [RO] ;get the data that RO points to

R1, R1,R3 ;additto R1

RO, RO, #+4 ;increment pointer

R2, R2, #0x1 ;decrement count with zero set
Loop iIf zero flag is not set, loop

R1, Result :otherwise done - store result
&11

Is table length zero?

Structure / Loops — p. 8/12

Prog ram: sum16b.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1,R1,R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2,#0 ;zero length table ?
13 BEQ Done ,yes => skip over sum loop
14 Loop
15 LDR R3, [RO] ;get the data that RO points to
16 ADD R1,R1,R3 addittoR1
17 ADD RO, RO, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop iIf zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11
BEQ Skip zero length tables

Protects from processing an empty list

Structure / Loops — p. 8/12

Prog ram: sum16b.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1,R1,R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2,#0 ;zero length table ?
13 BEQ Done ,yes => skip over sum loop
14 Loop
15 LDR R3, [RO] ;get the data that RO points to
16 ADD R1,R1,R3 addittoR1
17 ADD RO, RO, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop If zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11
LDR/ADD Using Post-index addressing we can remove the ADD:

LDR R3, [RO], #4

Structure / Loops — p. 8/12

Program: suml16b.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1,R1,R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2,#0 ;zero length table ?
13 BEQ Done ,yes => skip over sum loop
14 Loop
15 LDR R3, [RO] ;get the data that RO points to
16 ADD R1,R1,R3 ;addittoR1
17 ADD RO, RO, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop iIf zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

SUBS/BNE Decrement counter and branch to Loop if not zero

Structure / Loops — p. 8/12

¥

LDR
CMP
BEQ
Loop
LDR
CMP
BPL
ADD
Looptest
ADD
SUBS
BNE

Table DCD
TablEnd DCD
Length DCW

“Program: countneg.s
iy 4

R2, Length ;init element count

R2, #0 IS table empty

Done ;yes => skip loop

R3, [RO] ,get the data

R3, #0 IS it positive?
Looptest ;yes => skip next line

R1, R1, #1 :increment -ve number count

RO, RO, #+4 ;increment pointer
R2, R2, #0x1 ;decrement count with zero set
Loop ;until count is zero

&F1522040 ;table of values to be added
0
(TablEnd - Table) / 4 ;because we’re having to align

Structure / Loops — p. 9/12

27
28
31
34

Program: countneg.s

LDR R2, Length ;init element count

CMP R2,#0 IS table empty

BEQ Done ;yes => skip loop
Loop

LDR R3, [RO] ,get the data

CMP R3,#0 IS it positive?

BPL Looptest ;yes => skip next line

ADD R1,R1,#1 ;increment-ve number count
Looptest

ADD RO, RO, #+4 ;increment pointer
SUBS R2, R2, #0x1 ;decrement count with zero set
BNE Loop ;until count is zero

Table DCD &F1522040 ;table of values to be added
TablEnd DCD O
Length DCW (TablEnd - Table) / 4 ;because we’re having to align

CMP/BEQ Skip zero length tables

Structure / Loops — p. 9/12

Program: countneg.s

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS table empty

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3, #0 IS it positive?

16 BPL Looptest ;yes => skip next line

17 ADD R1,R1,#1 ;increment-ve number count
18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero

27

28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD O
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

BPL Brach if positive (plus)

Structure / Loops — p. 9/12

--",Program: countneg.s

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS table empty

12 BEQ Done ,yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,#0 IS it positive?

16 BPL Looptest ;yes => skip next line

17 ADD R1,R1,#1 ;increment-ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop ;until count is zero

27

28 Table DCD &F1522040 ;table of values to be added

31 TablEnd DCD O

34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align
BPL/ADD Using Conditional Execution we can write:

ADDM R1, Rl1, #1 ;inc -ve count if -ve
This would be faster, as it does not flush the pipeline

Structure / Loops — p. 9/12

Program: countneg.s

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS table empty

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,#0 IS it positive?

16 BPL Looptest ;yes => skip next line

17 ADD R1,R1,#1 ;increment-ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop ;until count is zero

27

28 Table DCD &F1522040 ;table of values to be added

31 TablEnd DCD O

34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align
LDR/ADD Move to next word, can be merged into one:

LDR R3, [RO], #4 ; get next val ue

Structure / Loops — p. 9/12

27
28
31
34

Program: countneg.s

LDR R2, Length ;init element count

CMP R2,#0 IS table empty

BEQ Done ;yes => skip loop
Loop

LDR R3, [RO] ,get the data

CMP R3,#0 IS it positive?

BPL Looptest ;yes => skip next line

ADD R1,R1,#1 ;increment-ve number count
Looptest

ADD RO, RO, #+4 ;increment pointer
SUBS R2, R2, #0x1 ;decrement count with zero set
BNE Loop ;until count is zero

Table DCD &F1522040 ;table of values to be added
TablEnd DCD O
Length DCW (TablEnd - Table) / 4 ;because we’re having to align

SUBS/BNE Decrement counter and branch to Loop if not zero

Structure / Loops — p. 9/12

Program: countneg.s

LDR R2, Length ;init element count

CMP R2,#0 IS table empty

BEQ Done ;yes => skip loop
Loop

LDR R3, [RO] ,get the data

CMP R3, #0 IS it positive?

BPL Looptest ;yes => skip next line

ADD R1,R1,#1 ;increment-ve number count
Looptest

ADD RO, RO, #+4 ;increment pointer
SUBS R2, R2, #0x1 ;decrement count with zero set
BNE Loop ;until count is zero

Table DCD &F1522040 ;table of values to be added
TablEnd DCD O
Length DCW (TablEnd - Table) / 4 ;because we’re having to align

Assembler will calculate the length of data table

Structure / Loops — p. 9/12

_Program: countneg16.s
/" °

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1, R1, R1 ,clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 IS count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [RO] ,get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 bitis 1
18 BNE Looptest ;Skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD RO, RO, #+4 ,increment pointer
22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop iIf zero flag is not set, loop

Structure / Loops — p. 10/12

Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1, R1, R1 ,clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;IS count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [RO] ,get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 bitis 1
18 BNE Looptest ;Skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD RO, RO, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;,decrement count with zero set
23 BNE Loop If zero flag is not set, loop

TEQ Test R2 for O

Structure / Loops — p. 10/12

Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1, R1, R1 ,clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;IS count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [RO] ,get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 bitis 1
18 BNE Looptest ;Skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD RO, RO, #+4 ,increment pointer
22 SUBS R2, R2, #0x1 ;,decrement count with zero set
23 BNE Loop If zero flag is not set, loop

TEQ/BEQ Protect loop from zero length tables

Structure / Loops — p. 10/12

Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ;increment pointer

22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop If zero flag is not set, loop
AND Clear all but halfword sign

Reset lower 15 bits

Structure / Loops — p. 10/12

Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1, R1, R1 ,clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 IS count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [RO] ,get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 bitis 1
18 BNE Looptest ;Skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD RO, RO, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;,decrement count with zero set
23 BNE Loop If zero flag is not set, loop

CMP Is halfword sign bit (bit 15) set (negative)

Structure / Loops — p. 10/12

Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1, R1, R1 ,clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 IS count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [RO] ,get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 bitis 1
18 BNE Looptest ;Skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD RO, RO, #+4 ,increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop If zero flag is not set, loop

BNE Skip to Looptest if value is positive

Structure / Loops — p. 10/12

Program: countnegl6.s

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ;increment pointer

22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop If zero flag is not set, loop
SUBS/BNE Using subtract and set to automatically detect zero

Branch to Loop if counter is not zero

Structure / Loops — p. 10/12

Program: countnegl6.s (Revised)

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ,increment pointer

22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop If zero flag is not set, loop
LDR/ADD By using Post-Index addressing we can write:

LDR R3, [RO], #4 ; read data and nobve on

Structure / Loops — p. 10/12

Program: countnegl6.s (Revised)

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ;increment pointer

22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop If zero flag is not set, loop
AND/CMP Using the “Set” option we can combine these into:

ANDS R3, R3, #0x8000
Zero flag is set if R3 is positive

Structure / Loops — p. 10/12

Program: countnegl6.s (Revised)

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ,increment pointer

22 SUBS R2, R2, #0x1 ;,decrement count with zero set

23 BNE Loop If zero flag is not set, loop
BEQ/ADD Using conditional execution we can avoid the branch:

ADDEQ R1, Rl1, #1 ; Inc counter If -ve

Structure / Loops — p. 10/12

Program: countnegl6.s (Revised)

9 LDR RO, =Datal ;load the address of the lookup table

10 EOR R1, R1, R1 ,clear R1 to store count

11 LDR R2, Length ;init element count

12 TEQ R2, #0 IS count zero?

13 BEQ Done ;yes => skip loop

14 Loop

15 LDR R3, [RO] ,get the data

16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th

17 CMP R3, #0x8000 bitis 1

18 BNE Looptest ;Skip next line if zero

19 ADD R1, R1, #1 ;increment -ve number count

20 Looptest

21 ADD RO, RO, #+4 ,increment pointer

22 SUBS R2, R2, #0x1 ;decrement count with zero set

23 BNE Loop If zero flag is not set, loop
LDRSH If we could use LDRSH this would be as simple

as countnet.s — but we can’t

Structure / Loops — p. 10/12

Loop

Program: countnegl6.s (Revised)

LDR
EOR
LDR
TEQ
BEQ

LDR
ANDS

ADDNE

SUBS
BNE

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ,clear R1 to store count

R2, Length ;init element count

R2, #0 ;IS count zero?

Done ,yes => skip loop

R3, [RO], #4 ,get the data
R3, R3, #0x8000 ;is halfword sign set

R1, R1, #1 ‘Increment -ve number count

R2, R2, #0x1 ‘decrement count with zero set
Loop If zero flag is not set, loop

Structure / Loops — p. 10/12

¥

Main

Loop

LDR
EOR
LDR
CMP
BEQ

LDR
CMP
BLS
MOV

Looptest

Done

ADD
SUBS
BNE

~_Program: largest16.s
o °

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store largest
R2, Length ;init element count

R2, #0 IS It an empty table

Done ;yes => skip loop

R3, [RO] ,get the data

R3, R1 ;,compare to largest
Looptest ;Skip next line if zero

R1, R3 ;increment -ve number count

RO, RO, #+4 ;increment pointer
R2, R2, #0x1 ;decrement count with zero set
Loop If zero flag is not set, loop

Structure / Loops — p. 11/12

¥

7 Main

8 LDR
9 EOR
10 LDR
11 CMP
12 BEQ
13 Loop

14 LDR
15 CMP
16 BLS
17 MOV
18 Looptest
19 ADD
20 SUBS
21 BNE
22 Done

~_Program: largest16.s
o °

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store largest
R2, Length ;init element count

R2, #0 IS It an empty table

Done ;yes => skip loop

R3, [RO] ,get the data

R3, R1 ;,compare to largest
Looptest ;Skip next line if zero

R1, R3 ;increment -ve number count

RO, RO, #+4 ;increment pointer
R2, R2, #0x1 ;decrement count with zero set
Loop If zero flag is not set, loop

EOR Quick way of setting R1 to zero

Structure / Loops — p. 11/12

Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;Skip next line if zero

17 MOV R1,R3 ;increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

CMP/BEQ Protect loop from empty list (zero length)

Structure / Loops — p. 11/12

Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;Skip next line if zero

17 MOV R1,R3 ;increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

CMP Compare new value (R3) against current largest (R1)

Structure / Loops — p. 11/12

Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;SKip next line if zero

17 MOV R1,R3 ;increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

BLS Branch if new is less than or same as current

Structure / Loops — p. 11/12

Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;Skip next line if zero

17 MOV R1,R3 ,increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

SUBS/BNE Using subtract to automatically detect zero

Branch to Loop if counter is not zero

Structure / Loops — p. 11/12

Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;Skip next line if zero

17 MOV R1,R3 ;increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

LDR/ADD With Post-Index addressing we can write:

LDR R3, [RO], #4 ; read data and nove on

Structure / Loops — p. 11/12

Program: largest16.s

8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count

11 CMP R2,#0 IS It an empty table

12 BEQ Done ;yes => skip loop

13 Loop

14 LDR R3, [RO] ,get the data

15 CMP R3,R1 ;,compare to largest

16 BLS Looptest ;SKip next line if zero

17 MOV R1,R3 ;increment -ve number count

18 Looptest

19 ADD RO, RO, #+4 ;increment pointer

20 SUBS R2, R2, #0x1 ;decrement count with zero set

21 BNE Loop If zero flag is not set, loop

22 Done

BLS/ADD Using conditional execution we can avoid the branch:

MOVGI R1, R3 ; Save new current | argest

Structure / Loops — p. 11/12

%

sProgram: normalize.s
e 4

, normalize a binary number

Main

Loop

Done

LDR
EOR
LDR
CMP
BEQ

ADD
MOVS
BPL

STR
STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;,clear R1 to store shift count
R3, [RO] ,get the value to normalize

R3, R1 IS It a non-zero value

Done ,yes => already normalised

R1, R1, #1 ;increment shift counter

R3, R3, LSL #0x1 ;shift value by one bit

Loop ;loop until upper bit (sign bit) set
R1, Shifted ;otherwise done - store result
R3, Normal

&11 ;exit

Structure / Loops — p. 12/12

¥

/7 =Program: normalize.s
iy 4

, normalize a binary number

Main

Loop

Done

LDR
EOR
LDR
CMP
BEQ

ADD
MOVS
BPL

STR
STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;,clear R1 to store shift count
R3, [RO] ,get the value to normalize

R3, R1 IS It a non-zero value

Done ,yes => already normalised

R1, R1, #1 ;increment shift counter

R3, R3, LSL #0x1 ;shift value by one bit

Loop ;loop until upper bit (sign bit) set
R1, Shifted ;otherwise done - store result
R3, Normal

&11 ;exit

Quick way of setting R1 to zero

Structure / Loops — p. 12/12

--"lProgram: normalize.s

1 ; normalize a binary number
2
/7 Main
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1, R1, R1 ;,clear R1 to store shift count
10 LDR R3, [RO] ,get the value to normalize
11 CMP R3, R1 IS It a non-zero value
12 BEQ Done ,yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit
CMP/BEQ Protect from zero entry

Otherwise we will enter a never ending loop

Structure / Loops — p. 12/12

¥

/7 =Program: normalize.s
iy 4

1 ; normalize a binary number
2
/7 Main
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1, R1, R1 ;,clear R1 to store shift count
10 LDR R3, [RO] ,get the value to normalize
11 CMP R3, R1 IS It a non-zero value
12 BEQ Done ,yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

ADD Increment shift counter

Structure / Loops — p. 12/12

¥

17
18
19
20

/7 =Program: normalize.s
iy 4

, normalize a binary number

Main

Loop

Done

MOVS/LSL

LDR
EOR
LDR
CMP
BEQ

ADD
MOVS
BPL

STR
STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;,clear R1 to store shift count
R3, [RO] ,get the value to normalize

R3, R1 IS It a non-zero value

Done ,yes => already normalised

R1, R1, #1 ;increment shift counter

R3, R3, LSL #0x1 ;shift value by one bit

Loop ;loop until upper bit (sign bit) set
R1, Shifted ;otherwise done - store result
R3, Normal

&11 ;exit

Shift value up by one bit and set flags

Structure / Loops — p. 12/12

--""Program: normalize.s

, normalize a binary number

Main

Loop

Done

LDR
EOR
LDR
CMP
BEQ

ADD
MOVS
BPL

STR
STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;,clear R1 to store shift count
R3, [RO] ,get the value to normalize

R3, R1 IS It a non-zero value

Done ,yes => already normalised

R1, R1, #1 ;increment shift counter

R3, R3, LSL #0x1 ;shift value by one bit

Loop ;loop until upper bit (sign bit) set
R1, Shifted ;otherwise done - store result
R3, Normal

&11 ;exit

Repeat until upper bit (sign bit) is positive

Structure / Loops — p. 12/12

	Systems Architecture
	Loops
	The Repeat ldots Until Loop
	The Repeat ldots Until Loop
	The Repeat ldots Until Loop

	The While Loop
	The While Loop
	The While Loop

	The Counted Loop
	The Counted Loop
	The Counted Loop

	Up or Down Counter
	Up or Down Counter
	Up or Down Counter

	Program: sum16.s
	Program: sum16.s
	Program: sum16.s
	Program: sum16.s
	Program: sum16.s
	Program: sum16.s
	Program: sum16.s
	Program: sum16.s

	Program: sum16b.s
	Program: sum16b.s
	Program: sum16b.s
	Program: sum16b.s
	Program: sum16b.s
	Program: sum16b.s

	Program: countneg.s
	Program: countneg.s
	Program: countneg.s
	Program: countneg.s
	Program: countneg.s
	Program: countneg.s
	Program: countneg.s

	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}

	Program: largest16.s
	Program: largest16.s
	Program: largest16.s
	Program: largest16.s
	Program: largest16.s
	Program: largest16.s
	Program: largest16.s
	Program: largest16.s

	Program: normalize.s
	Program: normalize.s
	Program: normalize.s
	Program: normalize.s
	Program: normalize.s
	Program: normalize.s

