
Systems Architecture

ARM Assembler

Structure / Loops

Structure / Loops – p. 1/12



Loops

• Four parts to any loop
i) initialisation 〈init〉

ii) body 〈body〉

iii) increment or 〈inc〉
decrement 〈dec〉

iv) exit condition 〈cond〉

• Three basic types of loop
i) Repeat . . . Until

ii) While

iii) Counted

Structure / Loops – p. 2/12



The Repeat . . . Until Loop

• Exit condition tested at end of loop

• Loop is executed at least once

Pseudocode:

〈init〉
Repeat

〈body〉
〈inc〉/〈dec〉

Until 〈cond〉

Structure / Loops – p. 3/12



The Repeat . . . Until Loop

• Exit condition tested at end of loop

• Loop is executed at least once

Pseudocode: C:

〈init〉 〈init〉;
Repeat do {

〈body〉 〈body〉;
〈inc〉/〈dec〉 〈inc〉/〈dec〉;

Until 〈cond〉 } while (〈cond〉);

Structure / Loops – p. 3/12



The Repeat . . . Until Loop

• Exit condition tested at end of loop

• Loop is executed at least once

Pseudocode: C: Assembler:

〈init〉 〈init〉; 〈init〉
Repeat do { label 〈body〉

〈body〉 〈body〉; 〈inc〉/〈dec〉
〈inc〉/〈dec〉 〈inc〉/〈dec〉; 〈cond〉

Until 〈cond〉 } while (〈cond〉); B〈cc〉 label

Structure / Loops – p. 3/12



The While Loop

• Exit condition tested at start of loop

• Loop may never be executed (zero or more times)

Pseudocode:

〈init〉
While 〈cond〉

〈body〉
〈inc〉/〈dec〉

End While

Structure / Loops – p. 4/12



The While Loop

• Exit condition tested at start of loop

• Loop may never be executed (zero or more times)

Pseudocode: C:

〈init〉 〈init〉;
While 〈cond〉 while (〈cond〉) {

〈body〉 〈body〉;
〈inc〉/〈dec〉 〈inc〉/〈dec〉;

End While }

Structure / Loops – p. 4/12



The While Loop

• Exit condition tested at start of loop

• Loop may never be executed (zero or more times)

Pseudocode: C: Assembler:

〈init〉 〈init〉; 〈init〉
While 〈cond〉 while (〈cond〉) { label1 〈cond〉

〈body〉 〈body〉; B〈cc〉 label2
〈inc〉/〈dec〉 〈inc〉/〈dec〉; 〈body〉

End While } 〈inc〉/〈dec〉
BAL label1

label2 . . .

Structure / Loops – p. 4/12



The Counted Loop

Up Counting Down Counting

• Pseudocode:
For 〈init〉 up to 〈cond〉 For 〈init〉 down to 〈cond〉

〈body〉 〈body〉
Next Next

Structure / Loops – p. 5/12



The Counted Loop

Up Counting Down Counting

• Pseudocode:
For 〈init〉 up to 〈cond〉 For 〈init〉 down to 〈cond〉

〈body〉 〈body〉
Next Next

• C:
for (〈init〉; 〈cond〉; 〈inc〉) { for (〈init〉; 〈cond〉; 〈dec〉) {

〈body〉; 〈body〉;
} }

Structure / Loops – p. 5/12



The Counted Loop

Up Counting Down Counting

• Pseudocode:
For 〈init〉 up to 〈cond〉 For 〈init〉 down to 〈cond〉

〈body〉 〈body〉
Next Next

• C:
for (〈init〉; 〈cond〉; 〈inc〉) { for (〈init〉; 〈cond〉; 〈dec〉) {

〈body〉; 〈body〉;
} }

• Assembler:
〈init〉

label 〈body〉
〈inc〉
〈cond〉
B〈cc〉 label

〈init〉
label 〈body〉

〈dec〉
〈cond〉
B〈cc〉 label

Structure / Loops – p. 5/12



Up or Down Counter

• Zero is easy to detect
• When counting down we can merge the decrement

and 〈cond〉 code into a single subs instruction.

Up Counting Down Counting

LDR R0, =Table LDR R0, =Table

MOV R1, #0 MOV R1, #0

MOV R2, #0 MOV R2, #10

Loop LDRB R3, [R0] Loop LDRB R3, [R0]

ADD R1, R1, R3 ADD R1, R1, R3

ADD R0, R0, #1 ADD R0, R0, #1

ADD R2, R2, #1 SUBS R2, R2, #1

CMP R2, #10 BNE Loop

BLT Loop
Structure / Loops – p. 6/12



Up or Down Counter

• Zero is easy to detect
• When counting down we can merge the decrement

and 〈cond〉 code into a single subs instruction.

Up Counting Down Counting

LDR R0, =Table LDR R0, =Table

MOV R1, #0 MOV R1, #0

MOV R2, #0 MOV R2, #10

Loop LDRB R3, [R0] Loop LDRB R3, [R0]

ADD R1, R1, R3 ADD R1, R1, R3

ADD R0, R0, #1 ADD R0, R0, #1

ADD R2, R2, #1 SUBS R2, R2, #1

CMP R2, #10 BNE Loop

BLT Loop
Structure / Loops – p. 6/12



Up or Down Counter

• Zero is easy to detect
• When counting down we can merge the decrement

and 〈cond〉 code into a single subs instruction.

Up Counting Down Counting

LDR R0, =Table LDR R0, =Table

MOV R1, #0 MOV R1, #0

MOV R2, #0 MOV R2, #10

Loop LDRB R3, [R0] Loop LDRB R3, [R0]

ADD R1, R1, R3 ADD R1, R1, R3

ADD R0, R0, #1 ADD R0, R0, #1

ADD R2, R2, #1 SUBS R2, R2, #1

CMP R2, #10 BNE Loop

BLT Loop
Structure / Loops – p. 6/12



Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

Structure / Loops – p. 7/12



Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

EOR Quick way of setting R1 to zero

Structure / Loops – p. 7/12



Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

Loop Label the next instruction

Structure / Loops – p. 7/12



Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

ADD Move pointer (R0) to next word

Structure / Loops – p. 7/12



Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

LDR/ADD Using Post-index addressing we can remove the ADD:
LDR R3, [R0], #4

Structure / Loops – p. 7/12



Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

SUBS Subtract and set flags
Decrement loop counter, R2

Structure / Loops – p. 7/12



Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

BNE Branch to Loop if counter is not equal to zero

Structure / Loops – p. 7/12



Program: sum16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count
11 Loop
12 LDR R3, [R0] ;get the data
13 ADD R1, R1, R3 ;add it to r1
14 ADD R0, R0, #+4 ;increment pointer
15 SUBS R2, R2, #1 ;decrement count with zero set
16 BNE Loop ;if zero flag is not set, loop
19
22 Table DCW &2040 ;table of values to be added
24 DCW &1C22
28 TablEnd DCD 0
29
31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

DCW Assembler will calculate the length of data table for me

Structure / Loops – p. 7/12



Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

Structure / Loops – p. 8/12



Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

EOR Quick way of setting R1 to zero

Structure / Loops – p. 8/12



Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

CMP Is table length zero?

Structure / Loops – p. 8/12



Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

BEQ Skip zero length tables
Protects from processing an empty list

Structure / Loops – p. 8/12



Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

LDR/ADD Using Post-index addressing we can remove the ADD:
LDR R3, [R0], #4

Structure / Loops – p. 8/12



Program: sum16b.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2, #0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [R0] ;get the data that R0 points to
16 ADD R1, R1, R3 ;add it to R1
17 ADD R0, R0, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop ;if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWI &11

SUBS/BNE Decrement counter and branch to Loop if not zero

Structure / Loops – p. 8/12



Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

Structure / Loops – p. 9/12



Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

CMP/BEQ Skip zero length tables

Structure / Loops – p. 9/12



Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

BPL Brach if positive (plus)

Structure / Loops – p. 9/12



Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

BPL/ADD Using Conditional Execution we can write:
ADDMI R1, R1, #1 ;inc -ve count if -ve
This would be faster, as it does not flush the pipeline

Structure / Loops – p. 9/12



Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

LDR/ADD Move to next word, can be merged into one:
LDR R3, [R0], #4 ; get next value

Structure / Loops – p. 9/12



Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

SUBS/BNE Decrement counter and branch to Loop if not zero

Structure / Loops – p. 9/12



Program: countneg.s

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is table empty
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, #0 ;is it positive?
16 BPL Looptest ;yes => skip next line
17 ADD R1, R1, #1 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;until count is zero
27
28 Table DCD &F1522040 ;table of values to be added
31 TablEnd DCD 0
34 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

DCW Assembler will calculate the length of data table

Structure / Loops – p. 9/12



Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

Structure / Loops – p. 10/12



Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

TEQ Test R2 for 0

Structure / Loops – p. 10/12



Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

TEQ/BEQ Protect loop from zero length tables

Structure / Loops – p. 10/12



Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

AND Clear all but halfword sign
Reset lower 15 bits

Structure / Loops – p. 10/12



Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

CMP Is halfword sign bit (bit 15) set (negative)

Structure / Loops – p. 10/12



Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

BNE Skip to Looptest if value is positive

Structure / Loops – p. 10/12



Program: countneg16.s

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

SUBS/BNE Using subtract and set to automatically detect zero
Branch to Loop if counter is not zero

Structure / Loops – p. 10/12



Program: countneg16.s (Revised)

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

LDR/ADD By using Post-Index addressing we can write:
LDR R3, [R0], #4 ; read data and move on

Structure / Loops – p. 10/12



Program: countneg16.s (Revised)

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

AND/CMP Using the “Set” option we can combine these into:
ANDS R3, R3, #0x8000
Zero flag is set if R3 is positive

Structure / Loops – p. 10/12



Program: countneg16.s (Revised)

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

BEQ/ADD Using conditional execution we can avoid the branch:
ADDEQ R1, R1, #1 ; Inc counter if -ve

Structure / Loops – p. 10/12



Program: countneg16.s (Revised)

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0] ;get the data
16 AND R3, R3, #0x8000 ;bit wise AND to see if the 16th
17 CMP R3, #0x8000 ;bit is 1
18 BNE Looptest ;skip next line if zero
19 ADD R1, R1, #1 ;increment -ve number count
20 Looptest
21 ADD R0, R0, #+4 ;increment pointer
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

LDRSH If we could use LDRSH this would be as simple
as countnet.s – but we can’t

Structure / Loops – p. 10/12



Program: countneg16.s (Revised)

8 Main
9 LDR R0, =Data1 ;load the address of the lookup table

10 EOR R1, R1, R1 ;clear R1 to store count
11 LDR R2, Length ;init element count
12 TEQ R2, #0 ;is count zero?
13 BEQ Done ;yes => skip loop
14 Loop
15 LDR R3, [R0], #4 ;get the data
16 ANDS R3, R3, #0x8000 ;is halfword sign set
17
18
19 ADDNE R1, R1, #1 ;increment -ve number count
20
21
22 SUBS R2, R2, #0x1 ;decrement count with zero set
23 BNE Loop ;if zero flag is not set, loop

Structure / Loops – p. 10/12



Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

Structure / Loops – p. 11/12



Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

EOR Quick way of setting R1 to zero

Structure / Loops – p. 11/12



Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

CMP/BEQ Protect loop from empty list (zero length)

Structure / Loops – p. 11/12



Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

CMP Compare new value (R3) against current largest (R1)

Structure / Loops – p. 11/12



Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

BLS Branch if new is less than or same as current

Structure / Loops – p. 11/12



Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

SUBS/BNE Using subtract to automatically detect zero
Branch to Loop if counter is not zero

Structure / Loops – p. 11/12



Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

LDR/ADD With Post-Index addressing we can write:
LDR R3, [R0], #4 ; read data and move on

Structure / Loops – p. 11/12



Program: largest16.s

7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store largest

10 LDR R2, Length ;init element count
11 CMP R2, #0 ;is it an empty table
12 BEQ Done ;yes => skip loop
13 Loop
14 LDR R3, [R0] ;get the data
15 CMP R3, R1 ;compare to largest
16 BLS Looptest ;skip next line if zero
17 MOV R1, R3 ;increment -ve number count
18 Looptest
19 ADD R0, R0, #+4 ;increment pointer
20 SUBS R2, R2, #0x1 ;decrement count with zero set
21 BNE Loop ;if zero flag is not set, loop
22 Done

BLS/ADD Using conditional execution we can avoid the branch:
MOVGT R1, R3 ; Save new current largest

Structure / Loops – p. 11/12



Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

Structure / Loops – p. 12/12



Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

EOR Quick way of setting R1 to zero

Structure / Loops – p. 12/12



Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

CMP/BEQ Protect from zero entry
Otherwise we will enter a never ending loop

Structure / Loops – p. 12/12



Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

ADD Increment shift counter

Structure / Loops – p. 12/12



Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

MOVS/LSL Shift value up by one bit and set flags

Structure / Loops – p. 12/12



Program: normalize.s

1 ; normalize a binary number
2
7 Main
8 LDR R0, =Data1 ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store shift count

10 LDR R3, [R0] ;get the value to normalize
11 CMP R3, R1 ;is it a non-zero value
12 BEQ Done ;yes => already normalised
13 Loop
14 ADD R1, R1, #1 ;increment shift counter
15 MOVS R3, R3, LSL #0x1 ;shift value by one bit
16 BPL Loop ;loop until upper bit (sign bit) set
17 Done
18 STR R1, Shifted ;otherwise done - store result
19 STR R3, Normal
20 SWI &11 ;exit

BPL Repeat until upper bit (sign bit) is positive

Structure / Loops – p. 12/12


	Systems Architecture
	Loops
	The Repeat ldots Until Loop
	The Repeat ldots Until Loop
	The Repeat ldots Until Loop

	The While Loop
	The While Loop
	The While Loop

	The Counted Loop
	The Counted Loop
	The Counted Loop

	Up or Down Counter
	Up or Down Counter
	Up or Down Counter

	Program: sum16.s
	Program: sum16.s
	Program: sum16.s
	Program: sum16.s
	Program: sum16.s
	Program: sum16.s
	Program: sum16.s
	Program: sum16.s

	Program: sum16b.s
	Program: sum16b.s
	Program: sum16b.s
	Program: sum16b.s
	Program: sum16b.s
	Program: sum16b.s

	Program: countneg.s
	Program: countneg.s
	Program: countneg.s
	Program: countneg.s
	Program: countneg.s
	Program: countneg.s
	Program: countneg.s

	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}
	Program: countneg16.s �romSlide {8}{(Revised)}

	Program: largest16.s
	Program: largest16.s
	Program: largest16.s
	Program: largest16.s
	Program: largest16.s
	Program: largest16.s
	Program: largest16.s
	Program: largest16.s

	Program: normalize.s
	Program: normalize.s
	Program: normalize.s
	Program: normalize.s
	Program: normalize.s
	Program: normalize.s


