
Systems Architecture

ARM Assembler

Data Movement

Beginning Programs – p. 1/10



Memory Access

• Load Register from memory
LDR〈cc〉 Rd, 〈op2〉 〈cc〉: MAR ← 〈op2〉

〈cc〉: MBR ← M(MAR)
〈cc〉: Rd ← MBR

• Store Register in memory
STR〈cc〉 Rs, 〈op2〉 〈cc〉: MAR ← 〈op2〉

〈cc〉: MBR ← Rs

〈cc〉: M(MAR) ← MBR

• Memory Reference must be 32-bit word aligned
otherwise a Data Abort Exception will occur
use the ALIGN directive to force alignment

Beginning Programs – p. 2/10



Load / Store Byte

• Load Register with unsigned Byte from memory
LDR〈cc〉B Rd, 〈op2〉 〈cc〉: MAR ← 〈op2〉

〈cc〉: MBR ← M(MAR)
〈cc〉: Rd(7:0) ← MBR
〈cc〉: Rd(31:8) ← 0

• Load Register with Signed Byte from memory
LDR〈cc〉SB Rd, 〈op2〉 〈cc〉: MAR ← 〈op2〉

〈cc〉: MBR ← M(MAR)
〈cc〉: Rd(7:0) ← MBR
〈cc〉: Rd(31:8) ← Rd(7)

• Store Register in a Byte of memory
STR〈cc〉B Rs, 〈op2〉 〈cc〉: MAR ← 〈op2〉

〈cc〉: MBR ← Rs

〈cc〉: M(MAR) ← Rs(7:0)
Beginning Programs – p. 3/10



Load / Store Halfword
• Does not work in the ARMulator
• An ARM word is 32-bits, so a Halfword is 16-bits
• Memory Reference must be Halfword aligned
• Load Register with unsigned Halfword from memory

LDR〈cc〉H Rd, 〈op2〉 〈cc〉: MAR ← 〈op2〉
〈cc〉: MBR ← M(MAR)
〈cc〉: Rd(15:0) ← MBR
〈cc〉: Rd(31:16)← 0

• Load Register with Signed Halfword from memory
LDR〈cc〉SH Rd, 〈op2〉 〈cc〉: MAR ← 〈op2〉

〈cc〉: MBR ← M(MAR)
〈cc〉: Rd(15:0) ← MBR
〈cc〉: Rd(31:16)← Rd(15)

• Store Register in a Halfword of memory
STR〈cc〉H Rs, 〈op2〉 〈cc〉: MAR ← 〈op2〉

〈cc〉: MBR ← Rs

〈cc〉: M(MAR) ← MBR(15:0)
Beginning Programs – p. 4/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

Beginning Programs – p. 5/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

TTL Define Program Title

Beginning Programs – p. 5/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

AREA Label Program Area

Code or Data space; Read Only or Read / Write
Beginning Programs – p. 5/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

ENTRY Define Program Entry Point

Beginning Programs – p. 5/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

Main Label the memory address

Debug will place breakpoint at Main
Beginning Programs – p. 5/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

SWI Software Interrupt — Call the Operating System

exit()
Beginning Programs – p. 5/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

& Define a Hexadecimal value

Beginning Programs – p. 5/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

DCW Define a 16-bit data value

Beginning Programs – p. 5/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

ALIGN Align data item on 32-bit word boundary

Beginning Programs – p. 5/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

END End of program source

Beginning Programs – p. 5/10



Program: move16.s

1. ; 16bit data transfer
2.
3. TTL move16 – 16-bit data transfer
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again

10. SWI &11 ; exit()
11.
12. Value DCW &C123 ; Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 ; Reserve space for result
15.
16. END

Bug Assembler can only find syntax errors

You have to find the logical errors
Beginning Programs – p. 5/10



Data Movement

• MOV Move Data
MOVS Move Data and Set Zero and Negative flags
MOV〈cc〉 Move Data if 〈cc〉

• MOV〈cc〉〈S〉 Rd, 〈op1〉 〈cc〉: ALU ← 〈op1〉
〈cc〉: Rd ← ALU

〈S〉〈cc〉: CPSR ← ALU(Flags)

• Move and Negate Data
MVN〈cc〉〈S〉 Rd, 〈op1〉 〈cc〉: ALU ← 〈op1〉

〈cc〉: Rd ← ALU
〈S〉〈cc〉: CPSR ← ALU(Flags)

• Rd is the destination (must be a register)
• 〈op1〉 is the source

Beginning Programs – p. 6/10



Program: invert.s

1. ; Find the one’s compliment (inverse) of a number
2.
3. TTL invert.s – one’s complement
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDR R1, Value ; Load number to be processed
9. MVN R1, R1 ; Invert (not) the value

10. STR R1, Result ; Store the result
11. SWI &11 ; exit()
12.
13. Value DCD &C123 ; Value to be complemented
14. Result DCD 0 ; Reserve space for result
15.
16. END

Beginning Programs – p. 7/10



Program: invert.s

1. ; Find the one’s compliment (inverse) of a number
2.
3. TTL invert.s – one’s complement
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDR R1, Value ; Load number to be processed
9. MVN R1, R1 ; Invert (not) the value

10. STR R1, Result ; Store the result
11. SWI &11 ; exit()
12.
13. Value DCD &C123 ; Value to be complemented
14. Result DCD 0 ; Reserve space for result
15.
16. END

Labels Used to access memory directly

Beginning Programs – p. 7/10



Program: invert.s

1. ; Find the one’s compliment (inverse) of a number
2.
3. TTL invert.s – one’s complement
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDR R1, Value ; Load number to be processed
9. MVN R1, R1 ; Invert (not) the value

10. STR R1, Result ; Store the result
11. SWI &11 ; exit()
12.
13. Value DCD &C123 ; Value to be complemented
14. Result DCD 0 ; Reserve space for result
15.
16. END

DCD Used to define (and initialise) memory values

No need for ALIGN as DCD defines 32-bit values
Beginning Programs – p. 7/10



Program: invert.s

1. ; Find the one’s compliment (inverse) of a number
2.
3. TTL invert.s – one’s complement
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDR R1, Value ; Load number to be processed
9. MVN R1, R1 ; Invert (not) the value

10. STR R1, Result ; Store the result
11. SWI &11 ; exit()
12.
13. Value DCD &C123 ; Value to be complemented
14. Result DCD 0 ; Reserve space for result
15.
16. END

MNV Move and Negate

Uses same register for Source1 and Destination
Beginning Programs – p. 7/10



Arithmetic

• Addition
ADD〈cc〉〈S〉 Rd, Rn, 〈op1〉 〈cc〉: ALU ← Rn + 〈op1〉

〈cc〉: Rd ← ALU
〈S〉〈cc〉: CPSR← ALU(Flags)

• Subtraction
SUB〈cc〉〈S〉 Rd, Rn, 〈op1〉 〈cc〉: ALU ← Rn − 〈op1〉

〈cc〉: Rd ← ALU
〈S〉〈cc〉: CPSR← ALU(Flags)

• Multiplication
MUL〈cc〉〈S〉 Rd, Rn, Rs 〈cc〉: ALU ← Rn × Rs

〈cc〉: Rd ← ALU
〈S〉〈cc〉: CPSR← ALU(Flags)

Multiply two 16-bit values (Rn and Rs) producing a 32-bit result (Rd)

• Division
There is no division instruction

Beginning Programs – p. 8/10



Program: add2.s

1. ; Add two numbers and store the result
. . .

7. Main
8. LDR R0, =Value1 ; R0 = &Value1
9. LDR R1, [R0] ; R1 = *R0

10. ADD R0, R0, #0x4 ; R0++
11. LDR R2, [R0] ; R2 = *R0
12. ADD R1, R1, R2 ; R1 = R1 + R2
13. LDR R0, =Result ; R0 = &Result
14. STR R1, [R0] ; *R0 = R1
15. SWI &11 ; exit(0)
16.
17. Value1 DCD &37E3C123
18. Value2 DCD &367402AA
19. Result DCD 0

. . .

Beginning Programs – p. 9/10



Program: add2.s

1. ; Add two numbers and store the result
. . .

7. Main
8. LDR R0, =Value1 ; R0 = &Value1
9. LDR R1, [R0] ; R1 = *R0

10. ADD R0, R0, #0x4 ; R0++
11. LDR R2, [R0] ; R2 = *R0
12. ADD R1, R1, R2 ; R1 = R1 + R2
13. LDR R0, =Result ; R0 = &Result
14. STR R1, [R0] ; *R0 = R1
15. SWI &11 ; exit(0)
16.
17. Value1 DCD &37E3C123
18. Value2 DCD &367402AA
19. Result DCD 0

. . .

. . . Lines of no interest are ignored

Beginning Programs – p. 9/10



Program: add2.s

1. ; Add two numbers and store the result
. . .

7. Main
8. LDR R0, =Value1 ; R0 = &Value1
9. LDR R1, [R0] ; R1 = *R0

10. ADD R0, R0, #0x4 ; R0++
11. LDR R2, [R0] ; R2 = *R0
12. ADD R1, R1, R2 ; R1 = R1 + R2
13. LDR R0, =Result ; R0 = &Result
14. STR R1, [R0] ; *R0 = R1
15. SWI &11 ; exit(0)
16.
17. Value1 DCD &37E3C123
18. Value2 DCD &367402AA
19. Result DCD 0

. . .

ADD Same register for Source1 and Destination

Beginning Programs – p. 9/10



Program: add2.s

1. ; Add two numbers and store the result
. . .

7. Main
8. LDR R0, =Value1 ; R0 = &Value1
9. LDR R1, [R0] ; R1 = *R0

10. ADD R0, R0, #0x4 ; R0++
11. LDR R2, [R0] ; R2 = *R0
12. ADD R1, R1, R2 ; R1 = R1 + R2
13. LDR R0, =Result ; R0 = &Result
14. STR R1, [R0] ; *R0 = R1
15. SWI &11 ; exit(0)
16.
17. Value1 DCD &37E3C123
18. Value2 DCD &367402AA
19. Result DCD 0

. . .

=label Load address of label into R0

Beginning Programs – p. 9/10



Program: add2.s

1. ; Add two numbers and store the result
. . .

7. Main
8. LDR R0, =Value1 ; R0 = &Value1
9. LDR R1, [R0] ; R1 = *R0

10. ADD R0, R0, #0x4 ; R0++
11. LDR R2, [R0] ; R2 = *R0
12. ADD R1, R1, R2 ; R1 = R1 + R2
13. LDR R0, =Result ; R0 = &Result
14. STR R1, [R0] ; *R0 = R1
15. SWI &11 ; exit(0)
16.
17. Value1 DCD &37E3C123
18. Value2 DCD &367402AA
19. Result DCD 0

. . .

LDR Load data from memory pointed to by R0

Beginning Programs – p. 9/10



Program: add2.s

1. ; Add two numbers and store the result
. . .

7. Main
8. LDR R0, =Value1 ; R0 = &Value1
9. LDR R1, [R0] ; R1 = *R0

10. ADD R0, R0, #0x4 ; R0++
11. LDR R2, [R0] ; R2 = *R0
12. ADD R1, R1, R2 ; R1 = R1 + R2
13. LDR R0, =Result ; R0 = &Result
14. STR R1, [R0] ; *R0 = R1
15. SWI &11 ; exit(0)
16.
17. Value1 DCD &37E3C123
18. Value2 DCD &367402AA
19. Result DCD 0

. . .

ADD Increment pointer in R0 by a word (4 bytes)

Beginning Programs – p. 9/10



Program: add2.s

1. ; Add two numbers and store the result
. . .

7. Main
8. LDR R0, =Value1 ; R0 = &Value1
9. LDR R1, [R0] ; R1 = *R0

10. ADD R0, R0, #0x4 ; R0++
11. LDR R2, [R0] ; R2 = *R0
12. ADD R1, R1, R2 ; R1 = R1 + R2
13. LDR R0, =Result ; R0 = &Result
14. STR R1, [R0] ; *R0 = R1
15. SWI &11 ; exit(0)
16.
17. Value1 DCD &37E3C123
18. Value2 DCD &367402AA
19. Result DCD 0

. . .

ADD/LDR No need for ADD instructions if LDR uses post-index

addressing: [R0], #0x4 or *(R0++) in C
Beginning Programs – p. 9/10



Program: add2.s

1. ; Add two numbers and store the result
. . .

7. Main
8. LDR R0, =Value1 ; R0 = &Value1
9. LDR R1, [R0] ; R1 = *R0

10. ADD R0, R0, #0x4 ; R0++
11. LDR R2, [R0] ; R2 = *R0
12. ADD R1, R1, R2 ; R1 = R1 + R2
13. LDR R0, =Result ; R0 = &Result
14. STR R1, [R0] ; *R0 = R1
15. SWI &11 ; exit(0)
16.
17. Value1 DCD &37E3C123
18. Value2 DCD &367402AA
19. Result DCD 0

. . .

STR Store data indirect (at memory pointed to by R0)

Beginning Programs – p. 9/10



Program: add2.s

1. ; Add two numbers and store the result
. . .

7. Main
8. LDR R0, =Value1 ; R0 = &Value1
9. LDR R1, [R0] ; R1 = *R0

10. ADD R0, R0, #0x4 ; R0++
11. LDR R2, [R0] ; R2 = *R0
12. ADD R1, R1, R2 ; R1 = R1 + R2
13. LDR R0, =Result ; R0 = &Result
14. STR R1, [R0] ; *R0 = R1
15. SWI &11 ; exit(0)
16.
17. Value1 DCD &37E3C123
18. Value2 DCD &367402AA
19. Result DCD 0

. . .

Comments These are bad comments

Comments should say why not what
Beginning Programs – p. 9/10



Program: shiftleft.s

1. ; Shift Left one bit
2.
3. TTL shiftleft.s
4. AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDR R1, Value ; Load the value to be shifted
9. MOV R1, R1, LSL #0x1 ; Shift Left one bit

10. STR R1, Result ; Store the result
11. SWI &11 ; exit
12.
13. Value DCD &4242 ; Value to be shifted
14. Result DCD 0 ; Space to store result
15.
16. END

LSL Logical Shift Left by 1 bit

Beginning Programs – p. 10/10


	Systems Architecture
	Memory Access
	Load / Store Byte
	Load / Store Halfword
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s

	Data Movement
	Program: invert.s
	Program: invert.s
	Program: invert.s
	Program: invert.s

	Arithmetic
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s

	Program: shiftleft.s

