Systems Architecture

ARM Assembler

Data Movement

Load Register from memory

LDR(cc) Rd, (op2)

(CC):

Store Register in memory
STR(cc) Rs,

(CC):
(CC):

(0p2) (CC

MAR «— (op2)
MBR «— M(MAR)
Rd — MBR
: MAR — (0p2)
:MBR «— Rs

- M(MAR) — MBR

Memory Reference must be 32-bit word aligned
otherwise a Data Abort Exception will occur
use the ALIGN directive to force alignment

Load | Store Byte

e Load Register with unsigned Byte from memory
LDR(cc)B Rd, (op2) cc): MAR — (0p2)
cc): MBR — M(MAR)
cc): Rd(7:0) «— MBR

cc): Rd(31:8) — 0O

e Load Register with Signed Byte from memory
LDR(cc)SB Rd, (op2) (cc): MAR — (0p2)
(cc): MBR — M(MAR)
(cc): Rd(7:0) — MBR
(cc): Rd(31:8) «— Rd(7)

e Store Register in a Byte of memory
STR(cc)B Rs, (op2) (cc): MAR «— (0p2)
(cc): MBR — Rs
(cc): M(MAR) «— Rs(7:0)

""""'Load [Store Halfword

Does not work in the ARMulator
An ARM word is 32-hits, so a Halfword is 16-bits
Memory Reference must be Halfword aligned

Load Register with unsigned Halfword from memory

LDR(cc)H Rd, (op2) (cc): MAR — (op2)
(cc): MBR — M(MAR)
(cc): Rd(15:0) «— MBR
(cc): Rd(31:16) — O

Load Register with Signed Halfword from memory

LDR(cc)SH Rd, (op2) (cc): MAR — (op2)
(cc): MBR — M(MAR)
(cc): Rd(15:0) «— MBR
(cc): Rd(31:16) «— Rd(15)

Store Register in a Halfword of memory

STR(cc)H Rs, (op2) (cc): MAR — (op2)
(cc): MBR — Rs
(cc): M(MAR) +«— MBR(15:0)

Beginning Programs — p. 4/10

%

"~ Program: movel6.s
e A

1. ; 16bit data transfer

2.

3. TTL movel6 — 16-bit data transfer

4, AREA Program, CODE, READONLY

5. ENTRY

6.

7. Main

8. LDRB R1, Value ; Load value

9. STR R1, Result ; Sore it again
10. SWI &11 ; exit()
11.
12. Value DCW &C123 , Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 , Reserve space for result
15.

16. END

Beginning Programs — p. 5/10

%

"~ Program: movel6.s
e A

1. ; 16bit data transfer
2.
3. TTL movel6 — 16-bit data transfer
4, AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again
10. SWI &11 ; exit()
11.
12. Value DCW &C123 , Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 , Reserve space for result
15.
16. END

TTL Define Program Title

Beginning Programs — p. 5/10

%

OCONOUAWNE

"~ Program: movel6.s
e A

: 16bit data transfer

Main

Value

Result

TTL movel6 — 16-bit data transfer
AREA Program, CODE, READONLY
ENTRY

LDRB R1, Value ; Load value
STR R1, Result ; Sore it again

SWi &11 ; exit()

DCW &C123 , Source value to be moved
ALIGN ; Alling next word

DCW 0 , Reserve space for result
END

Label Program Area
Code or Data space; Read Only or Read / Write

Beginning Programs — p. 5/10

%

"~ Program: movel6.s
e A

1. ; 16bit data transfer
2.
3. TTL movel6 — 16-bit data transfer
4, AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again
10. SWI &11 ; exit()
11.
12. Value DCW &C123 , Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 , Reserve space for result
15.
16. END

ENTRY Define Program Entry Point

Beginning Programs — p. 5/10

%

OCONOUAWNE

"~ Program: movel6.s
e A

: 16bit data transfer

Main

Value

Result

TTL movel6 — 16-bit data transfer
AREA Program, CODE, READONLY
ENTRY

LDRB R1, Value ; Load value
STR R1, Result ; Sore it again

SWi &11 ; exit()

DCW &C123 , Source value to be moved
ALIGN ; Alling next word

DCW 0 , Reserve space for result
END

Label the memory address
Debug will place breakpoint at Main

Beginning Programs — p. 5/10

%

OCONOUA~WNE

"~ Program: movel6.s
e A

: 16bit data transfer

Main

Value

Result

TTL movel6 — 16-bit data transfer
AREA Program, CODE, READONLY
ENTRY

LDRB R1, Value ; Load value
STR R1, Result ; Sore it again

SWi &11 ; exit()

DCW &C123 , Source value to be moved
ALIGN ; Alling next word

DCW 0 , Reserve space for result
END

Software Interrupt — Call the Operating System
exit()

Beginning Programs — p. 5/10

%

"~ Program: movel6.s
e A

1. ; 16bit data transfer
2.
3. TTL movel6 — 16-bit data transfer
4, AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again
10. SWI &11 ; exit()
11.
12. Value DCW &C123 , Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 , Reserve space for result
15.
16. END

& Define a Hexadecimal value

Beginning Programs — p. 5/10

%

"~ Program: movel6.s
e A

1. ; 16bit data transfer
2.
3. TTL movel6 — 16-bit data transfer
4, AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again
10. SWI &11 ; exit()
11.
12. Value DCW &C123 , Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 , Reserve space for result
15.
16. END

DCW Define a 16-bit data value

Beginning Programs — p. 5/10

%

"~ Program: movel6.s
e A

1. ; 16bit data transfer
2.
3. TTL movel6 — 16-bit data transfer
4, AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again
10. SWI &11 ; exit()
11.
12. Value DCW &C123 , Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 , Reserve space for result
15.
16. END

ALIGN Align data item on 32-bit word boundary

Beginning Programs — p. 5/10

%

"~ Program: movel6.s
e A

1. ; 16bit data transfer
2.
3. TTL movel6 — 16-bit data transfer
4, AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again
10. SWI &11 ; exit()
11.
12. Value DCW &C123 , Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 , Reserve space for result
15.
16. END

END End of program source

Beginning Programs — p. 5/10

%

"~ Program: movel6.s
e A

1. ; 16bit data transfer
2.
3. TTL movel6 — 16-bit data transfer
4, AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDRB R1, Value ; Load value
9. STR R1, Result ; Sore it again
10. SWI &11 ; exit()
11.
12. Value DCW &C123 : Source value to be moved
13. ALIGN ; Alling next word
14. Result DCW 0 , Reserve space for result
15.
16. END
Bug Assembler can only find syntax errors

You have to find the logical errors

Beginning Programs — p. 5/10

I’Data Movement

MOV Move Data
MOVS Move Data and Set Zero and Negative flags
MOV(cc) Move Data If ({cc)
MOV(cc)(S) Rd, (opl) (cc): ALU « (opl)
(cc): Rd — ALU

(S){cc): CPSR «— ALU(Flags)

Move and Negate Data
M/N(cc)(S) Rd, (opl) (cc): ALU — (opl)

(cc): Rd — ALU
(S){cc): CPSR «— ALU(Flags)

Rd is the destination (must be a register)

(opl) Is the source

¥

Beginning Programs — p. 6/10

%

“Program: Invert.s
e 4

1. ; Find the one’s compliment (inverse) of a number
2.
3. TTL Invert.s — one’s complement
4, AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDR R1, Value ; Load number to be processed
9. MVN R1, R1 ; Invert (not) the value
10. STR R1, Result ; Store the result
11. SWI &11 ; exit()
12.
13. Value DCD &C123 ; Value to be complemented
14. Result DCD 0 ; Reserve space for result
15.

16. END

Beginning Programs — p. 7/10

¥

1.

2.

3. TTL

4. AREA

5. ENTRY

6.

7. Main

8. LDR

0. MVN
10. STR
11. SWI
12.

13. Value DCD
14. Result DCD

16. END

/# =Program: invert.s
iy 4

; FInd the one’s compliment (inverse) of a number

Invert.s — one’s complement
Program, CODE, READONLY

R1, Value ; Load number to be processed

R1, R1 ; Invert (not) the value

R1, Result ; Store the result

&11 ; exit()

&C123 ; Value to be complemented
0 ; Reserve space for result

Labels Used to access memory directly

Beginning Programs — p. 7/10

¥

/# =Program: invert.s
iy 4

1. ; Find the one’s compliment (inverse) of a number
2.
3. TTL Invert.s — one’s complement
4, AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDR R1, Value ; Load number to be processed
9. MVN R1, R1 ; Invert (not) the value
10. STR R1, Result ; Store the result
11. SWI &11 ; exit()
12.
13. Value DCD &C123 , Value to be complemented
14. Result DCD 0 , Reserve space for result
15.
16. END
DCD Used to define (and initialise) memory values

No need for ALI GN as DCD defines 32-bit values

Beginning Programs — p. 7/10

¥

/# =Program: invert.s
iy 4

1. ; Find the one’s compliment (inverse) of a number
2.
3. TTL Invert.s — one’s complement
4, AREA Program, CODE, READONLY
5. ENTRY
6.
7. Main
8. LDR R1, Value ; Load number to be processed
9. MVN R1, R1 , Invert (not) the value
10. STR R1, Result ; Store the result
11. SWI &11 ; exit()
12.
13. Value DCD &C123 ; Value to be complemented
14. Result DCD 0 ; Reserve space for result
15.
16. END
MNV Move and Negate

Uses same register for Source; and Destination

Beginning Programs — p. 7/10

Addition
ADD(cc)(S)

Rd, Rn,

Subtraction

SUB(cc)(S) Rd, Rn,

Multiplication

MJL{(cc)(S) Rd, Rn,

Multiply two 16-bit values (Rn and Rs) producing a 32-bit result (Rd)

Division

There is no division Instruction

(cC):
(S)(cc):

:ALU «— Rn + (opl)
'Rd — ALU
: CPSR «— ALU(Flags)

:ALU «— Rn — (opl)
Rd +— ALU
: CPSR «— ALU(Flags)

:ALU «— Rn X Rs

Rd «— ALU
CPSR «— ALU(Flags)

Beginning Programs — p. 8/10

%

“Pro ram: add2.s
e "’

: Add two numbers and store the result

Main

LDR
LDR
ADD
LDR
ADD
LDR
STR
SWI

Valuel DCD
Value2 DCD

Result

DCD

RO, =Valuel : RO = &Valuel

R1, [RO] ' R1 = *R0

RO, RO, #0x4 : RO++

R2, [RO] ' R2 = *R0
R1,R1,R2 :R1=R1+R2

RO, =Result : RO = &Result

R1, [RO] ; *RO =R1
&11 , exit(0)
&37E3C123

&367402AA

0

Beginning Programs — p. 9/10

¥

“Pro ram: add2.s
o A

: Add two numbers and store the result

Main

LDR
LDR
ADD
LDR
ADD
LDR
STR
SWiI

Valuel DCD
Value2 DCD

Result

DCD

RO, =Valuel : RO = &Valuel

R1, [RO] ' R1 = *R0

RO, RO, #0x4 : RO++

R2, [RO] ' R2 = *R0
R1,R1,R2 :R1=R1+R2

RO, =Result : RO = &Result

R1, [RO] ; *RO =R1
&11 , exit(0)
&37E3C123

&367402AA

0

Lines of no interest are ignored

Beginning Programs — p. 9/10

%

"~ Program: add2.s
e "’

1. : Add two numbers and store the result

7. Main

8. LDR

9. LDR
10. ADD
11. LDR
12. ADD
13. LDR
14. STR
15. SWiI
16.

17. Valuel DCD
18. Value2 DCD
19. Result DCD

RO, =Valuel : RO = &Valuel

R1, [RO] ' R1 =*RO0
RO, RO, #0x4 : RO++
R2, [RO] ' R2 = *R0O

R1, R1, R2 ' R1=R1 +R2
RO, =Result : RO = &Result

R1, [RO] ; *RO =R1
&11 , exit(0)
&37E3C123

&367402AA

0

ADD Same register for Source; and Destination

Beginning Programs — p. 9/10

¥

=label

“Pro ram: add2.s
o A

: Add two numbers and store the result

Main

LDR
LDR
ADD
LDR
ADD
LDR
STR
SWiI

Valuel DCD
Value2 DCD

Result

DCD

RO, =Valuel : RO = &Valuel

R1, [RO] ' R1 = *R0

RO, RO, #0x4 : RO++

R2, [RO] ' R2 = *R0
R1,R1,R2 :R1=R1+R2

RO, =Result : RO = &Result
R1, [RO] ' *R0O = R1
&11 , exit(0)
&37E3C123

&367402AA

0

Load address of label into RO

Beginning Programs — p. 9/10

¥

“Pro ram: add2.s
o A

1. : Add two numbers and store the result

7. Main

8. LDR

9. LDR
10. ADD
11. LDR
12. ADD
13. LDR
14. STR
15. SWiI
16.

17. Valuel DCD
18. Value2 DCD
19. Result DCD

RO, =Valuel : RO = &Valuel

R1, [RO] ' R1 =*RO0O
RO, RO, #0x4 : RO++
R2, [RO] ' R2 = *RO0O

R1, R1, R2 ' R1 =R1+R2
RO, =Result : RO = &Result

R1, [RO] ; *RO =R1
&11 , exit(0)
&37E3C123

&367402AA

0

LDR Load data from memory pointed to by RO

Beginning Programs — p. 9/10

%

"~ Program: add2.s
e "’

1. : Add two numbers and store the result

7. Main

8. LDR

9. LDR
10. ADD
11. LDR
12. ADD
13. LDR
14. STR
15. SWiI
16.

17. Valuel DCD
18. Value2 DCD
19. Result DCD

RO, =Valuel : RO = &Valuel

R1, [RO] ' R1 =*RO0
RO, RO, #0x4 : RO++
R2, [RO] ' R2 = *R0O

R1, R1, R2 ' R1 =R1+R2
RO, =Result : RO = &Result

R1, [RO] ; *RO =R1
&11 , exit(0)
&37E3C123

&367402AA

0

ADD Increment pointer in RO by a word (4 bytes)

Beginning Programs — p. 9/10

¥

“Pro ram: add2.s
o A

1. : Add two numbers and store the result

7. Main

0.
10.
11.
12.
13.
14.
15.
16.
17. Valuel
18. Value2
19. Result

ADD/LDR

LDR
LDR
ADD
LDR
ADD
LDR
STR
SWiI

DCD
DCD
DCD

RO, =Valuel ;RO = &Valuel

R1, [RO] ' R1 =*RO0
RO, RO, #0x4 : RO++
R2, [RO] ' R2 = *R0O

R1, R1, R2 'R1=R1+R2
RO, =Result : RO = &Result

R1, [RO] ; *RO =R1
&11 , exit(0)
&37E3C123

&367402AA

0

No need for ADD instructions if LDR uses post-index
addressing: [RO], #0x4 or *(RO++) in C

Beginning Programs — p. 9/10

%

"~ Program: add2.s
e "’

1. : Add two numbers and store the result

7. Main

8. LDR RO, =Valuel : RO = &Valuel
9. LDR R1, [RO] ' R1 = *R0O
10. ADD RO, RO, #0x4 : RO++
11. LDR R2, [RO] ' R2 = *R0O
12. ADD R1,R1, R2 'R1=R1+R2
13. LDR RO, =Result : RO = &Result
14. STR R1, [RO] ' *R0O = R1
15. SWI &11 ; exit(0)
16.

17. Valuel DCD &37E3C123
18. Value2 DCD &367402AA
19. Result DCD O

STR Store data indirect (at memory pointed to by RO0)

Beginning Programs — p. 9/10

%

"~ Program: add2.s
e "’

: Add two numbers and store the result

1.

7. Main

8. LDR

0. LDR
10. ADD
11. LDR
12. ADD
13. LDR
14. STR
15. SWI
16.
17. Valuel DCD
18. Value2 DCD
19. Result DCD

Comments

RO, =Valuel : RO = &Valuel

R1, [RO] ' R1 = *R0

RO, RO, #0x4 : RO++

R2, [RO] ' R2 = *R0
R1,R1,R2 :R1=R1+R2

RO, =Result : RO = &Result

R1, [RO] ; *RO =R1
&11 , exit(0)
&37E3C123

&367402AA

0

These are bad comments

Comments should say why not what

Beginning Programs — p. 9/10

%

"~ Program: shiftleft.s
e "’

1. : Shift Left one bit
2
3 TTL shiftleft.s
4, AREA Program, CODE, READONLY
5. ENTRY
6
7. Main
8 LDR R1, Value : Load the value to be shifted
0. MOV R1, R1, LSL #0x1 :; Shift Left one bit
10. STR R1, Result - Store the result
11. SWiI &11 - exit
12.
13. Value DCD &4242 * Value to be shifted
14. Result DCD 0 , Space to store result
15.
16. END

LSL Logical Shift Left by 1 bit

Beginning Programs — p. 10/10

	Systems Architecture
	Memory Access
	Load / Store Byte
	Load / Store Halfword
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s
	Program: move16.s

	Data Movement
	Program: invert.s
	Program: invert.s
	Program: invert.s
	Program: invert.s

	Arithmetic
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s
	Program: add2.s

	Program: shiftleft.s

