
Systems Architecture

The ARM Processor

The ARM Processor – p. 1/14

The ARM Processor

• ARM: Advanced RISC Machine
First developed in 1983 by Acorn Computers
ARM Ltd was formed in 1988 to continue development

• Advantages of the ARM
RISC: Reduced Instruction Set Computer

Low power: good for mobile computing
and battery operated devices

Licensed: Developers can extend the chip
in any way they require

Sales: Outsold all other processors in
the last three years

The ARM Processor – p. 2/14

Assembler Programming

• CPU executes binary machine code (aka object code)

• We write assembly code (human readable-ish)

• Format of assembly code is CPU dependent

• An assembler converts assembly code into machine code

• A compiler converts a high-level programming language
into assembler which is then assembled into machine code

The ARM Processor – p. 3/14

Processor modes

The ARM has seven processor modes

Processor mode Description

User usr Normal program execution mode

FIQ fiq Fast Interrupt for high-speed data transfer

IRQ irq Used for general-purpose interrupt handling

Supervisor svc A protected mode for the operating system

Abort abt Virtual memory / memory protection

Undefined und Undefined Instructions
Provides support for developer extensions

System sys Runs privileged operating system tasks

The ARM Processor – p. 4/14

All ARM Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

SPSR

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

SPSR

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

SPSR

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

SPSR

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

SPSR

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

SPSR

CPSR

usr sys svc abt und irq fiq

Privileged Modes

Exception Modes

The ARM Processor – p. 5/14

ARM Registers

• R0 – R7
General-purpose unbanked registers
Same register for all modes
Used for Parameter Passing

• R8 – R12
General-purpose banked registers
All modes share the same register except
Fast Interrupt (fiq) mode which has its own
Used as local registers

• R13 – R14
Each mode has it’s own register:
R13 – The Stack Pointer (aka SP)
R14 – The Link Register (aka LR)

• R15 (aka PC)
All modes share the same program counter

The ARM Processor – p. 6/14

General-Purpose Registers

• 13 General Purpose Registers (R0 – R12)
Use as (32-bit) variables
Fast access as register are kept on-chip
Relies on programmers memory

• Multi-Length Access
Load and Store instructions can access just the lower
8-bits (Byte) or 16-bits (Halfword) of a 32-bit register

• Signed/Unsigned Access
When accessing Bytes or Halfwords, what happens
to the upper 24- or 16-bits:
Unsigned: Top bits are set to zero
Signed: Top bits are set to preserves the sign

The ARM Processor – p. 7/14

Process Status Register

CPSR Current Status Shared by all modes
SPSR Saved Status Each supervisor modes has own

31 30 29 28 27 · · · 8 7 6 5 4 · · · 0

N Z C V SBZ I F SBZ Mode

N True if result of last operation is Negative

Z True if result of last operation was Zero or equal

C True if an unsigned borrow (Carry over) occurred
Value of last bit shifted

V True if a signed borrow (oVerflow) occurred

I True if IRQ interrupts are disabled

F True if FIQ (Fast) interrupts are disabled

Mode Processor mode: usr, sys, svc, abt, und, IRQ, or FIQ

SBZ Should Be Zero — bits are Unused
The ARM Processor – p. 8/14

Exceptions

• Exceptions can be caused by internal
and external events

• When an exception occurs:
Current Processor Status is preserved
Program execution is stopped
Processor mode is changed
Processor executes an event handler

• At the end of the event handler :
Processor Status is restored
Processor mode is restored
Execution returns to user program

The ARM Processor – p. 9/14

Possible Exceptions

Mode Exception / Description
svc Reset

On power up or system reset
und Undefined

Attempt to execute an undefined instruction
allows for extend instruction set

svc Software Interrupt (SWI)
Allows user programs to call the operating system

abt Prefetch Abort
Attempt to execute an invalid instruction

abt Data Abort
Attempt to access non-aligned memory

IRQ Interrupt Request
External device requesting attention

FIQ Fast Interrupt Request
Same as IRQ but for impatient devices

The ARM Processor – p. 10/14

Instructions and Addresses

• All instructions require a destination and at least one
source which is given in terms of an effective address

• Data Processing effective addresses (〈op1〉):
Immediate #nnn Scaled Immediate Rn, 〈shift〉 #nnn

Register Rn Scaled Register Rn, 〈shift〉 Rs

• Memory Access effective addresses (〈op2〉):
Immediate Register Scaled Register

Offset [Rn, #nnn] [Rn, Rm] [Rn, Rm, 〈shift〉 #nnn]

Pre-indexed [Rn, #nnn]! [Rn, Rm]! [Rn, Rm, 〈shift〉 #nnn]!

Post-Indexed [Rn], #nnn [Rn], Rm [Rn], Rm, 〈shift〉 #nnn

• Where 〈shift〉 is one of:
LSL Logical Shift Left ROR Rotate Right
LSR Logical Shift Right RRX Rotate Right eXtended
ASR Arithmetic Shift Right

The ARM Processor – p. 11/14

Assembler Code Terminology

Mnemonic
Label or Directive Operands Comment

︷ ︸︸ ︷

Main
︷ ︸︸ ︷

MOV
︷ ︸︸ ︷

r0, #0
︷ ︸︸ ︷

; move 0 into R0

label Give a name to the location of the instruction

mnemonic Human readable name given to an instruction
MOV (Move) or LDR (Load Register)

operands Arguments for a given instruction
effective address (Data or Memory)

directive Instructions to the assembler
END (End of program source)

The ARM Processor – p. 12/14

Example Assembly Program

1. * === Example Program ===
2.
3. AREA Program, CODE, READONLY
4. ENTRY
5.
6. Main MOV r0, #0 ; R0← 0
7.
8. Repeat LDRB r1, [r12, #0] ; R1(7:0)← Input
9. CMP r1, #0 ; If R1 == 0 then

10. BEQ Done ; PC← Done
11.
12. ADD r0, r0, r0, LSL #2 ; R0← R0 + R0 * 4
13. ADD r0, r1, r0, LSL #1 ; R0← R1 + R0 * 2
14. BAL Repeat ; PC← Repeat
15.
16. Done STR r0, [r12, #0] ; Output← R0
17. SWI &11
18.
19. END

The ARM Processor – p. 13/14

Assembler Directives

AREA Declare Program Area
Set the type of program area (code or data)
Memory type: ReadWrite or ReadOnly

ENTRY Declare program’s entry point
(address of the program’s first instruction)

EQU Equate label with a value
Associate a name with a value

END End of source code

DCB Define Constant Byte (8-bits)
DCW Define Constant Word (16-bits)
DCD Define Constant Data (32-bits)

Value placed in memory at program start up.
The ARM Processor – p. 14/14

	The ARM Processor
	Assembler Programming
	Processor modes
	All ARM Registers
	ARM Registers
	General-Purpose Registers
	Process Status Register
	Exceptions
	Possible Exceptions
	Instructions and Addresses
	Assembler Code Terminology
	Example Assembly Program
	Assembler Directives

