Systems Architecture

The ARM Processor

"""IThe ARM Processor

e ARM: Advanced RISC Machine
First developed in 1983 by Acorn Computers
ARM Ltd was formed in 1988 to continue development

e Advantages of the ARM
RISC: Reduced Instruction Set Computer

Low power: good for mobile computing
and battery operated devices

Licensed: Developers can extend the chip
In any way they require

Sales: Outsold all other processors in
the last three years

The ARM Proces

'-Assembler Programmin
e 4 ;)

CPU executes binary machine code (aka object code)

We write assembly code (human readable-ish)

Format of assembly code is CPU dependent

An assembler converts assembly code into machine code

A compiler converts a high-level programming language
Into assembler which is then assembled into machine code

The ARM Processor — p. 3/14

""",Processor modes

The ARM has seven processor modes

Processor mode Description

User

FIQ
IRQ

Supervisor
Abort
Undefined

System

usr
fiqg
Irq
SVC
abt

und

Sys

Normal program execution mode

Fast Interrupt for high-speed data transfer
Used for general-purpose interrupt handling
A protected mode for the operating system
Virtual memory / memory protection

Undefined Instructions
Provides support for developer extensions

Runs privileged operating system tasks

The ARM Processor — p. 4/14

AII ARM Registers

Privileged Modes

A
Exception Modes
usr ///;;; svc abt 441;;;‘; irq fiq
RO RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
R8 R38 RS8 R8 R8 R8 R8
RO RO RO RO RO RO RO
R10 R10 R10 R10 R10 R10 R10
R11 R11 R11 R11 R11 R11 R11
R12 R12 R12 R12 R12 R12 R12
R13 R13 R13 R13 R13 R13 R13
R14 R14 R14 R14 R14 R14 R14
PC PC PC PC PC PC PC
CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSR SPSR SPSR SPSR SPSR SPSR

The ARM Processor — p. 5/14

¥

“_ARM Registers
e 4 ;

e RO-RY
General-purpose unbanked registers
Same regqister for all modes
Used for Parameter Passing

e R8-R12
General-purpose banked registers
All modes share the same register except
Fast Interrupt (fig) mode which has its own
Used as local registers

e R13-R14
Each mode has it's own register:
R13 — The Stack Pointer (aka SP)
R14 — The Link Register (aka LR)

e RI15 (aka PC)
All modes share the same program counter

The ARM Proces

GeneraI-Purpose Registers

13 General Purpose Registers (RO — R12)
Use as (32-hit) variables

Fast access as register are kept on-chip
Relies on programmers memory

Multi-Length Access
Load and Store instructions can access just the lower
8-bits (Byte) or 16-bits (Halfword) of a 32-bit register

Signed/Unsigned Access

When accessing Bytes or Halfwords, what happens
to the upper 24- or 16-bits:

Unsigned: Top bits are set to zero

Signed: Top bits are set to preserves the sign

The ARM Proc

¥

'-Process Status Register
iy 4

CPSR Current Status Shared by all modes
SPSR Saved Status Each supervisor modes has own

31 30 29 28 27 --- 8 7 6 S5 4 ... 0
N| Z|C |V SBZ | | F | SBZ Mode

N True If result of last operation is Negative
True If result of last operation was Zero or equal

C True If an unsigned borrow (Carry over) occurred
Value of last bit shifted

N

V True If a signed borrow (oVerflow) occurred

I True If IRQ interrupts are disabled

F True If FIQ (Fast) interrupts are disabled
Mode Processor mode: usr, sys, svc, abt, und, IRQ, or FIQ
SBZ Should Be Zero — bits are Unused

The ARM Proc

Exceptions

e EXxceptions can be caused by internal
and external events

e When an exception occurs:
Current Processor Status Is preserved
Program execution Is stopped
Processor mode is changed
Processor executes an event handler

e At the end of the event handler:
Processor Status is restored
Processor mode is restored
Execution returns to user program

The ARM Proc

SVC

abt

abt

IRQ
FIQ

Possible Exceptions

Exception / Description

Reset
On power up or system reset

Undefined - |
Attempt to execute an undefined instruction
allows for extend instruction set

Software Interrupt (SWI) |
Allows user programs to call the operating system

Prefetch Abort |
Attempt to execute an invalid instruction

Data Abort |
Attempt to access non-aligned memory

Interrupt Request |
External device requesting attention

Fast Interrupt Request |
Same as IRQ but for impatient devices

The ARM Processor —p. 10/14

"”Instructions and Addresses

e All instructions require a destination and at least one
source which is given in terms of an effective address

e Data Processing effective addresses ((opl)):
Immediate #nnn Scaled Immediate Rn, (shift) #nnn

Register Rn Scaled Register Rn, (shift) Rs

e Memory Access effective addresses ({op2)):
Immediate Register Scaled Register
Offset [Rn,#nnn] [Rn,Rm] [Rn, Rm, (shift) #nnn]
Pre-indexed [Rn,#nnn]! [Rn,Rm]' [Rn, Rm, (shift) #nnn]
Post-Indexed [Rn], #nnn [Rn], Rm [Rn], Rm, (shift) #nnn

e Where (shift) IS one of:
LSL Logical Shift Left ROR Rotate Right
LSR Logical Shift Right RRX Rotate Right eXtended
ASR Arithmetic Shift Right

The ARM Processor —p.11/14

Mnemonic

Label or Directive Operands Comment
Main = MOV “"r0, #0 ": nmove 0 into RO

label Give a name to the location of the instruction

mnemonic Human readable name given to an instruction
MOV (Move) or LDR (Load Register)

operands Arguments for a given instruction
effective address (Data or Memory)

directive Instructions to the assembler
END (End of program source)

The ARM Processor —p. 12/14

OCONOOGO ~WNE

%

"-Exam le Assembly Program
" Y F1O9

* === Example Program ===
AREA Program, CODE, READONLY
ENTRY

Main MOV ro, #0 RO+~ 0

Repeat LDRB rl, [r12, #0] : R1(7:0) < Input
CMP rl, #0 , If R1 == 0 then
BEQ Done - PC <~ Done
ADD r0, r0, r0, LSL#2 ; RO+~ RO+ R0O*4
ADD ro,r1, r0,LSL#1 ; RO+ R1+R0O*2
BAL Repeat ; PC «+— Repeat

Done STR ro, [r12, #0] ; Output — RO
SWI &11

END

The ARM Processor —p. 13/14

AREA

ENTRY

EQU

END

-"”’Assembler Directives

Declare Program Area
Set the type of program area (code or data)
Memory type: ReadWrite or ReadOnly

Declare program’s entry point
(address of the program’s first instruction)

Equate label with a value
Associate a name with a value

End of source code

Define Constant Byte (8-bits)
Define Constant Word (16-bits)
Define Constant Data (32-bits)
Value placed in memory at program start up.

The ARM Processor —p. 14/14

	The ARM Processor
	Assembler Programming
	Processor modes
	All ARM Registers
	ARM Registers
	General-Purpose Registers
	Process Status Register
	Exceptions
	Possible Exceptions
	Instructions and Addresses
	Assembler Code Terminology
	Example Assembly Program
	Assembler Directives

