
Bournemouth University
School of Design, Engineering and Computing

Course: B.Sc. Computing
B.Sc. Software Engineering Management

Unit: Systems Architecture
Assignment: Two
Due Date: 7th March 2005

Aims and Objectives

This assignment provides the student with the opportunity to demonstrate their ability to work
on thair own, to practice their ability to view their own work in a critical light, in the process of
demonstrating their understanding of low level programming.

The assignment is intended to address the following learning outcomes:

1: Describe the format of simple data structures and their limitations.

3: Understand the relationship between computer hardware and software.

4: Relate basic constructs of high-level programming language to their low level implementation.

5: Explain how a computer system processes real-time events.

The Task

You are to work independently to provide the software compenent for a more complex alarm
clock than that given in the first assignment. You are to complete the tick and keyboard
subroutines outlined in the skeleton file (clock.s). A test harness (harness.s) is also
provided to assist with testing, but this should not be modified.

The tick subroutine is called once every second; it is responsible for updating the current time
and checking it against the alarm setting. The alarm time (Alarm) and current time (Time) are
stored as hours and minutes in BCD form. Setting the single byte variable Klaxon to any non-zero
value will turn on the alarm, while setting the variable to zero will turn it off.

When the current time is the same as the alarm time, the klaxon should be sounded. The klaxon
should be allowed to continue sounding for an hour after the alarm time. If the user presses the
snooze key the klaxon should be silenced for up to ten minutes. You do not need to implement
the snooze feature.

The Keyboard subroutine is called when a key on the control panel is pressed. It should read the
keyboard matrix from the single-byte variable KeyCode with the following values:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused Unused Unused Snooze Minute Hour Alarm Time

The keys are pressed in a combination. The user presses the Time key and either the Hour or
Minute keys. The keyboard routine will increment either the hour count or the minute count
accordingly. Similarly the Alarm key and the Hour or Minute keys will increment either the hour
or minute count for the alarm setting.

A test harness is provided to allow you to test your code. To run the software you should:

1. Create a new project, (called clock.apj); you should add the file clock.s to the new
project. As this includes the test harness you should not add harness.s to the project.

2. You should now build the project to test out the skeleton and test harness.

3. Now run the debugger to get a feel for the test harness and debug environment.

4. To run the test harness you must first “step” over the initialisation code added by the
assembler.

5. You can now “step into” the Main program.

6. You should now “step”, which will call the test harness. This will report the current time
and alarm setting in the Console window before asking for your input. If you use the “step
into” function you will have a large number of steps to make before the system stops to
await your input.

7. When the test harness is ready to call your code (keyboard or tick) it will return from the
test harness and allow you to step through, and thus debug, your code.

The test harness supports the following operations:

T Time Pressing the T key will place the harness into “Time Mode”. This is as if
the user has pressed the Time key. Pressing either the H or M keys will call
the keyboard routine with the Time bit set and either the Hour or Minute
bit set according to which key was pressed.

A Alarm Places the harness into “Alarm Mode”. This is as if the user has pressed
the Alarm key. Pressing either the H or M keys will call the keyboard routine
with the Alarm bit set and either the Hour or Minute bit set depending on
which key was pressed.

H Hour Set the hour bit in the keyboard matrix and call the keyboard subroutine.
If a mode has been selected, the mode bits will be set accordingly (Time or
Alarm), however, if a mode has not been selected neither of the mode bits
will be set, and the keyboard routine should ignore the request.

M Minute Set the minute bit in the keyboard matrix and call the keyboard subroutine.
If a mode has been selected, the mode bits will be set accordingly (Time or
Alarm), however, if a mode has not been selected then neither of the mode
bits will be set and the keyboard routine should ignore such a request.

〈Space〉 Tick This will call the tick subroutine. As the tick routine is to count seconds
rather than minutes you should press the space bar 60 times for each minute.

S Snooze Set the snooze bit in the keyboard matrix and calls the keyboard subroutine.
The klaxon should be silenced (turned off) for a short period of up to 10
minutes. This is an optional feature and you are not required to implement
this.

Q Quit Will exit the test harness are return to the monitor.

The following notes may help:

1. The Time and Alarm values are stored as 32-bit words in Binary Coded Decimal format.

2. The hours and minutes are stored as two 8-bit values in the lower half of a 32-bit word. The
highest value for the lower byte (minutes) is 59. Hence you must reset the value to zero and
increment the upper byte (hours) in your code.

3. Remember to use “step” to step over of call to the test harness, this is the instruction:

BLAL Harness

On line 11 of the clock.s skeleton file. This will make single stepping though your code
much easer as you will be able to ignore the test harness.

Deliverables

You are expected to hand in a single coursework report containing the following:

• A Coursework Report sheet completed with your name and lab group.

• A written description of the operation of your tick and keyboard subroutines.

• Design documentation for the two subroutines, including any pseudo-code, flow-charts, test
programs, or any other documentation you may have produced.

• A print out of fully commented program listing.

• An assessment of your own work. You should give yourself a mark out of 10, where 0 is
considered to be very poor and 10 is outstanding. You must use one or two paragraphs to
justify your self-assessment. You should include a couple of paragraphs on what you have
learned by attempting this assignment.

• A critical review of the assignment. This should be no more than two or three paragraphs.

You will be required to demonstrate your solution in the first seminar after the hand-in date. It is
expected that this demonstration should last for no more than five minutes. The demonstrations
should be carried out in an informal, but professional manner.

Marking Scheme

Description Design Documentstion Commented Code Persional Development
tick 10 tick 10 tick 10 Self Assessment 10
keyboard 10 keyboard 10 keyboard 10 Critical Review 10

Snooze 10 Demonstration 10

Signatures

Lecturer .

Quality Assessor .

clock.s — skeleton Clock file for you to complete

TTL − Alarm Clock − <Put Your Name Here>

; ===
AREA Program, CODE, READONLY

; ===

; Make things just a bit easier to debug !

ENTRY
Main

BLAL Harness ; Call the test harness
LDR LR, =Main ; Set Return address
MOV PC, R12 ; Call Students Code

; ===
; Include the Test Harness
; ===

INCLUDE harness.s
OPT 1 ; Turn Listing output on

; ===
AREA Assignment, CODE, READONLY

; ===

; ===
; Tick
; ===
;
; This routine is called once every second. It should:
;
; Increment a seconds counter
; If seconds counter == 60 then
; reset seconds counter to zero
; increment current time
; increment minute count
; if minute count == 60 then
; reset minute count to zero
; increment hour count
; if hour count == 13 then
; reset hour count to one
; end if
; end if
; Ensure Klaxon is off
; if current time == alarm time then
; Turn Klaxon On
; end if
; end if

Tick
NOP ; Your code goes in here.

MOV PC,LR ; Return to harness

OPT 4 ; New page

; ===
; Keyboard
; ===
;
; This routine is called when the user presses any of the control buttons on the alarm
; clock. The keyboard consists of just four keys. The KEYCODE variable holds the value
; for the keyboard matrix as follows :
;
; Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
; Unused Unused Unused Snooze Minute Hour Alarm Time
;
; To set the alarm time the user must hold the ”Alarm” key down and press the ”Hour”
; key to increment the Alarm time by one hour.
;
; This routine should read the keyboard by reading the KEYCODE variable and modify
; the Current Time or the Alarm time accordingly.

Keyboard
LDRB R0, KeyCode
NOP ; Your code goes in here.

MOV PC, LR ; Return to harness

OPT 4 ; New Page

; ===
AREA Data, DATA

; ===

; Current time and Alarm time are both stored as Binary Coded Decimal values.
; I.e. , $1234 represents 12:34 or thirty four minutes past 12.

Time DCD 0x1234 ; Current Time in BCD (12:34)
Alarm DCD 0x1240 ; Alarm Time in BCD (12:40)

Klaxon DCB 0 ; $00 is Off, $FF is On
KeyCode DCB 0 ; Keyboard Matrix

; Any additional variable you require should be placed here.

END

harness.s — Test harness for clock

OPT 2 ; Turn Listing Off

; ===
; Test Harness − DO NOT CHANGE
; ===

AREA TestHarness, CODE

Harness
MOV R11, LR ; Save the return address

LDR R0, HReturn
ORRS R0, R0, R0
MOVNE PC, R0

; Report current status to the user
HStatus

LDR R10, =MSG ; Display Time
BLAL ASCIIZ
LDR R0, Time ; Read time
BLAL ShowTime ; Display it

BLAL ASCIIZ ; Display Alarm setting
LDR R0, Alarm ; Read Alarm setting
BLAL ShowTime ; Display it

LDRB R0, Klaxon ; Read Klaxon Status

ORRS R0, R0, R0 ; Is it clear ?
BLNE ASCIIZ ; No => Display Status

; Prompt the user for the next command

LDR R10, =Prompt ; Point to prompt text
BLAL ASCIIZ

SWI &4 ; Read char from keyboard

CMP R0, #’a’ ; Is char lower case?
SUBGE R0, R0, #’ ’ ; Yes => Convert to upper case

; Lookup command in command table

LDR R10, =Command ; Start of command table
EOR R3, R3, R3 ; Counter (command)

HCmd LDRB R1, [R10], #1 ; Read command letter
ORRS R1, R1, R1 ; Is it end of table?
BEQ HStatus ; No => Go around again

CMP R1, R0 ; Is it this command?
BEQ doCommand ; Yes => Execute it

; Skip to next command letter
HSkip LDRB R1, [R10], #1

ORRS R1, R1, R1 ; Is it zero?
BNE HSkip
ADD R3, R3, #1 ; Increment command count
BAL HCmd ; Look at next command

doCommand
; Display command text
BLAL ASCIIZ

LDR R10, =JumpTable ; Point to jump table

LDR PC, [R10, R3, LSL #2] ; Jump to function

; ===
;
; Time Mode (T)
; Modify current time
; Set the Time bit (bit 0) in the Keyboard matrix.

HTime
MOV R0, #0x01 ; 0000 0001 (Time Bit)
STRB R0, KeyCode ; Set Keyboard Matrix
BAL HStatus

; ===
;
; Alarm Mode (A)
; Modify Alarm time
; Set the Alarm bit (bit 1) in the Keyboard matrix.

HAlarm
MOV R0, #0x02 ; 0000 0010 (Alarm Bit)
STRB R0, KeyCode ; Set Keyboard Matrix
BAL HStatus

; ===
;
; Snooze (S)
; Hit the Snooze button − Set the Snooze bit (bit 4)
; in the Keyboard matrix and then call the students
; keyboard handler.

HSnooze
MOV R0, #0x10 ; 0001 0000 (Snooze Bit)
BLAL HKeyboard ; Call Student’s code

EOR R0, R0, R0
STRB R0, KeyCode ; Clear Keyboard Matrix
BAL HStatus

; ===
;
; Hours (H)
; Increment Hours of current mode (Time or Alarm)
; Set the Hour bit in the keyboard matrix, leaving
; the current mode set. Then call the students keyboard
; handler.

HHour
MOV R1, #0x04 ; 0000 0100 (Hour Bit)
BAL HKey ; Call Student’s code

; ===
;
; Minutes (M)
; Increment Minute of current mode (Time or Alarm)
; Set the Minute bit in the keyboard matrix, leaving
; the current mode set. Then call the students keyboard
; handler.

HMinute
MOV R1, #0x08 ; 0000 1000 (Minute Bit)

; This code can lead to the user pushing the Minute or
; Hour button without setting a Mode. The students code
; is going to have to process this possibility.

HKey
LDRB R0, KeyCode ; Read current matrix

AND R0, R0, #0x03 ; Keep the Mode bits
ORR R0, R0, R1 ; Set Key bit (H or M)
BLAL HKeyboard ; Call Student’s code
BAL HStatus

HKeyboard
MVN R1, R0
ORR R0, R0, R1, LSL #5
STRB R0, KeyCode

STR LR, HReturn ; Save return address

LDR R12, =UserCode
LDR R12, [R12]
MOV PC, R11 ; Call Student’s code

; ===
;
; Tick (Space)
; This is a bit of a cheat. It is here to allow the student
; to test their tick code without worrying about it ticking
; away every second.

HTick
EOR R0, R0, R0
STR R0, HReturn ; Save Harness Status

LDR R12, =UserCode
LDR R12, [R12, #4]
MOV PC, R11 ; Call Student’s code

; ===
;
; Quit (Q)
; Stop the harness and return to the monitor

HQuit
SWI &11

; ===
; Display − Display the time in R0

ShowTime
MOV R9, LR ; Save Return address

AND R1, R0, #0xFF ; R1 = Minutes
MOV R2, R0, LSR #8 ; R2 = Hours

MOV R0, R2
BLAL ShowTwo ; Display Hours

MOV R0, #’:’
SWI &0 ; Display ”:”

MOV R0, R1 ; Display Minutes
MOV LR, R9 ; Recover Return Address

ShowTwo
MOV R3, R0 ; Save Second nibble
MOV R0, #’0’ ; ASCII ”0”
ADD R0, R0, R3, LSR #4 ; Add first nibble
SWI &0 ; Display it

MOV R0, #’0’ ; ASCII ”0”
AND R3, R3, #0xF ; Disregard first Nibble
ADD R0, R0, R3 ; Add to ASCII ”0”
SWI &0 ; Display char

MOV PC, LR ; Return

; Display ASCIIZ String
; R10 points to the zero terminated string
; R0 reset to zero

ASCIIZ LDRB R0, [R10], #1 ; Read in the character, inc R10
CMP R0, #0 ; Is char zero terminator ?
MOVEQ PC, LR ; Yes => Return to caller

SWI &0 ; No => Display char (R0)
BAL ASCIIZ ; Next char

OPT 4 ; New Page

; ===
; Private Data Section for the Test Harness
; ===

; AREA HarnessData, DATA

MSG DCB 13,10,”Time: ”,0
DCB ” Alarm: ”,0
DCB ” [Alarm]”,0

Prompt DCB ” ? ”,0

Command
DCB ”T”, 13,10,”Time Mode”,0
DCB ”A”, 13,10,”Alarm Mode”,0
DCB ”H”, ”our”,0
DCB ”M”, ”inute”,0
DCB ”S”, ”nooze”,0
DCB ” ”, ”Tick”,0
DCB ”Q”, ”uit”,13,10,0
DCB 0

ALIGN
JumpTable

DCD HTime
DCD HAlarm
DCD HHour
DCD HMinute
DCD HSnooze
DCD HTick
DCD HQuit

UserCode
DCD Keyboard
DCD Tick

HReturn DCD 0

; ===
; End of Test Harness
; ===

OPT 4 ; New Page

END

