
Practical and Theoretical Aspects of

Forth Software Development

Peter J. Knaggs

A thesis submitted in partial ful�llment of the requirements of the

University of Teesside for the degree of Doctor of Philosophy.

The University of Teesside in collaboration with Computer

Solutions Limited

March 1993

Practical and Theoretical Aspects of

Forth Software Development

Copyright c Peter J. Knaggs
March 1993

The author hereby grants The University of Teesside permission to

reproduce and to distribute copies of this document in whole or in part.

Practical and Theoretical Aspects of

Forth Software Development

Copyright c March 1993, Peter J. Knaggs

Abstract

This is an investigation into the use of the Forth programming environment. The main areas of enquiry
were: interfacing Forth to other languages; interfacing Forth and local area networks; and the use of
RISC processors with stack based architecture such as the NC4000 and Harris RTX series.

We describe how to interface Forth and C. We also provide a system with a multi-tasking
interrupt driven interface to the Ibm NetBios networking software and a simple, generic, method of task
activation through message passing.

Many aspects of the investigation proved to be dependent on a more thorough theoretical under-
pinning for the Forth language. The use of a typeless parameter stack means that a programmer must
concern himself with the intellectual burden of managing the parameter stack. The mismatching of stack
elements can be the cause of subtle logic errors. We therefore investigated the possibility of developing a
\type algebra" that would allow us to develop a typed version of Forth. This thesis includes a theory
for a \type signature algebra" for the stack based argument passing method used by Forth.

To support the use of multi-tasking we provide a simple, but formal, theory of concurrent tasks
based on state machines that synchronise on events. This has a graphical notation for people who are
not familiar with formal notations.

We also looked at how formalisms might be used to de�ne a semantic model for the Forth
language and how formalisms can help to de�ne the relationship between Forth's stack based virtual
machine and register based target processors.

i

Contents

1 Overview 1

1.1 Introduction : 1
1.2 Equipment : 2
1.3 Forth : 2
1.4 The Novix NC4000 Forth Engine : 4
1.5 The Harris RTX-2000 Forth Engine : 4
1.6 Networks : 5
1.7 Mixed Languages Interface : 5
1.8 Formal Methods : 5

1.8.1 Formal Forth : 6
1.8.2 Type Algebra : 6
1.8.3 The Event Calculus : 7

2 Using IBM's NetBios 8

2.1 Introduction : 8
2.2 Functions : 8

2.2.1 Naming : 8
2.2.2 Sessions : 9
2.2.3 Datagrams : 9
2.2.4 Broadcasting : 9
2.2.5 House keeping : 9

2.3 Invoking NetBios Functions : 9
2.4 Multi-Tasking : 10
2.5 Examples : 10

2.5.1 Block Transfer : 10
2.5.2 Net-Chat : 11

2.6 Problems : 11
2.6.1 PolyForth : 11
2.6.2 Interrupts : 11
2.6.3 Porting : 12

2.7 Comparison with C interface : 12
2.8 Interface Code : 12

2.8.1 Error Handler : 12
2.8.2 Network Control Block : 14
2.8.3 Assembler Interface : 14
2.8.4 Low-Level interface : 16
2.8.5 General Support : 17
2.8.6 Naming Support : 18
2.8.7 Session Support : 18
2.8.8 Datagram Support : 20

Practical and Theoretical Aspects of Forth Software Development: CONTENTS ii

2.8.9 Broadcast Support : 20
2.9 The \Net-Chat" Application : 21

2.9.1 Memory Bu�ers : 21
2.9.2 Listening : 22
2.9.3 Sending : 23
2.9.4 Initialisation : 23
2.9.5 Close Down : 25

3 Mixed Languages interface 26

3.1 Principles : 26
3.2 Argument Passing : 26
3.3 Programming : 26
3.4 The C Heap : 27
3.5 Organisation : 28
3.6 Generalisation : 28

4 Formal Forth 29

4.1 Introduction : 29
4.2 The Forth Toolbox : 29
4.3 The Basic Model : 30
4.4 Word De�nitions : 30
4.5 Immediate Words : 30
4.6 Storage Units : 30
4.7 Stacks : 31
4.8 Code De�nitions : 31
4.9 Wordlists : 32
4.10 De�ning words : 32

4.10.1 High-Level words : 33
4.10.2 Immediate words : 33
4.10.3 Code words : 33

4.11 Dictionary Searching : 34

5 Stack Optimisation 35

5.1 Introduction : 35
5.2 Code Generation : 37
5.3 Inline Compilation : 37
5.4 Peep-Hole Optimisation : 38

5.4.1 Conditionals : 39
5.5 Registers : 39
5.6 Optimisation using a Stack image : 40

5.6.1 Argument Passing : 40
5.6.2 Conditional execution : 42
5.6.3 Looping structures : 43

6 The Cell Type 44

6.1 Introduction : 44
6.2 Stack Types : 44
6.3 Notation : 45
6.4 Rules : 45

6.4.1 Composition Rules : 45
6.4.2 Reduction Rules : 46
6.4.3 Wildcard Rules : 46

Practical and Theoretical Aspects of Forth Software Development: CONTENTS iii

6.5 Simple Examples : 47
6.6 Multiple Signatures : 48
6.7 Pass by reference : 48
6.8 Control Structures : 49
6.9 Casting : 50
6.10 Strong vs Weak Typing : 50

6.10.1 Strong Typing : 50
6.10.2 Weak Typing : 51

7 A Forth Type Checker 52

7.1 Invocation : 52
7.2 Stack Notation : 52
7.3 Commands : 53

7.3.1 Classes : 53
7.3.2 Type Command : 54
7.3.3 Stack Command : 55
7.3.4 Assume Command : 55
7.3.5 Assert Command : 56
7.3.6 Syntax Command : 56

7.4 Variable Stack Items : 56
7.4.1 Or | | : 56
7.4.2 Alternative descriptions | + : 57

7.5 Flow Control : 58
7.6 De�ning words : 59

7.6.1 Pre-de�ned : 59
7.6.2 User-de�ned : 59

7.7 Vocabularies : 60
7.8 Error Log : 60

7.8.1 Error report : 60
7.8.2 Verbose reports : 60
7.8.3 Statistics : 61
7.8.4 Statistics ag : 61

7.9 Problems : 61

8 The Event Calculus 63

8.1 Introduction : 63
8.2 State Machines : 64
8.3 The Formal Model : 65
8.4 An Algebra of machine behaviours : 67
8.5 Labelled Transitions : 67
8.6 Simple Examples : 68

8.6.1 The speci�cation of mutual exclusion (without fairness) : : : : : : : : : : : : : : : 68
8.6.2 Asynchronous Events : 69
8.6.3 Value passing : 71
8.6.4 Mutual Exclusion with fairness : 71

8.7 A GCD algorithm, modelling parameter passing and procedure call : : : : : : : : : : : : : 72
8.8 Variables and Scopes : 73
8.9 Time : 74
8.10 The Dynamic model : 76
8.11 Combining the Event Calculus with Z schema calculus : 78
8.12 A Distributed seat booking system : 80

Practical and Theoretical Aspects of Forth Software Development: CONTENTS iv

9 Conclusions and Recommendations 84

9.1 Introduction : 84
9.2 Networks : 85
9.3 Mixed Languages Interface : 85
9.4 Formal Forth : 85
9.5 Stack Optimisation : 86
9.6 Type Algebra : 86
9.7 Forth Type Checker : 86
9.8 The Event Calculus : 87
9.9 Future Directions : 87

9.9.1 Type Algebra : 87
9.9.2 Formal Forth : 87
9.9.3 Event Calculus : 88

Bibliography 89

Bibliography 89

A Communicating Novix NC4016s 95

A.1 Introduction : 95
A.2 Programming : 95

A.2.1 cmForth : 95
A.2.2 SCForth : 95
A.2.3 PolyForth : 96
A.2.4 FATWIN : 96

A.3 Single Boards : 96
A.4 Host Services : 97
A.5 Parallel Boards : 97

A.5.1 First Method : 98
A.5.2 Second Method : 99
A.5.3 Comparison : 99

A.6 Communicating Systems : 100
A.6.1 Hardware Restrictions : 100
A.6.2 Communication : 100

A.7 Code : 101
A.7.1 Multiple Boards \Boot" code : 102
A.7.2 First attempt at providing Host Services : 103
A.7.3 Revised Boot and Host code : 104

B Forth++ and the MACH1 107

B.1 The MACH1 : 107
B.2 The MACH2 : 107
B.3 Forth++ : 107

B.3.1 Memory Organisation : 108
B.3.2 Multi-Tasking and Windows : 108
B.3.3 Argument Records : 108

B.4 The Multi-Processor Forth Interpreter : 110
B.4.1 The Users View : 110
B.4.2 Implementation Notes : 111

B.5 Code Optimisation : 111
B.6 Graphics : 112

Practical and Theoretical Aspects of Forth Software Development: CONTENTS v

C Mixed Languages Interface: Source Code 114

C.1 Loader : 114
C.2 Making the loader : 126
C.3 Overlay initialisation : 126
C.4 Context Switching : 128
C.5 Stack access : 132
C.6 User code : 134
C.7 Making the C Overlay : 139

1

Chapter 1

Overview

This project has the aim of developing software tools and formal notations that facilitate target
software development for Multi-processor systems.

As Computer Solutions (our industrial partners) specialise in \Real-Time" and safety critical
systems, the work has been slanted toward providing development methods for this form of programming.
Computer Solutions are also one of the few companies that specialise in using the Forth programming
language. Thus our main objective is to investigate software development on multi-processor RISC
systems under the Forth development environment.

In this chapter we provide an overview of the entire project, from start to �nish. This chapter is
intended to introduce the reader to the work, which is described in more detail in the rest of this report.
It is also intended to acquaint the reader with the results of this work.

1.1 Introduction

The initial areas of investigation were as follows:

� The provision of a method of communicating between multiple processors, and the message passing
system that this would involve.

� The interfaces between Forth and other high-level languages, for example allowing the developer
the freedom to interface with supplier propriety code. This is to be done in such a way that Forth's
interactive user interface is maintained.

� The interface between Forth and a local area network as a method of providing a multi-processor
message passing system.

� The provision of such system on RISC based micro-controllers such as the Novix NC4000, Harris
RTX-2000 or other such processors.

We were able to address some of these problems directly. We describe a mixed language interface,
an interrupt driven network interface etc. However, many aspects of our investigations proved to be
dependent on a more thorough theoretical underpinning of the Forth language. Thus our attention
moved to providing such a foundation. This work mainly consisted of:

� Forth uses a typeless parameter stack to pass arguments, a programmer must concern himself
with the intellectual burden of managing the parameter stack. He must not only know the location
of each argument on the stack, but also its logical type. The mismatching of types can be the cause
of a subtle logic error. We therefore investigated the possibility of developing a \type algebra" that
would allow us to check the type of stack elements. We have suggested how this algebra could be
built into a stand alone program, or more properly into the standard compiler mechanism.

Practical and Theoretical Aspects of Forth Software Development: Overview 2

� In order to support the speci�cation and use of multi-tasking, we supply a theory of concurrent tasks
based on state machines that synchronise on events. This should provide a close match between
the theoretical state machine and a task in the �nal implementation. To allow people not familiar
with formal notations to use this theory we have provided a graphical representation for use with
this theory.

� We also looked at how formalisms might be used to de�ne a semantic model of the Forth language.
We have provided a formal base from which the semantic meaning of a program can be derived.
We used this formal base to investigate the relationship between the stack based virtual machine
and register based target processors.

1.2 Equipment

Novix{4000 Boards: We were using PC4000 boards made by Silicon Composers. This was a board
that contained a Novix NC4016 CPU running at 4 MHz. The board is �tted with an edge connector
suitable for connection to an Ibm Pc.

The PC4000 board has 512 KBytes of processor memory dedicated to the Novix processor. Some
16 KBytes of this memory is shared with the Ibm Pc. This \Dual ported memory" provides a
mechanism by which the Ibm Pc can communicate with the Novix.

As the PC4000 board does not contain any rom the Novix is placed in an idle state when �rst
powered up. It is the responsibility of the Ibm Pc to load a Novix \boot" program into the dual
ported memory and then to provide an interrupt signal that sets the Novix executing the code
placed in the dual ported memory.

This memory is located at memory location 00000 on the Novix board. It is mapped into the
Ibm Pc's memory space at a variable location (set via the shorting of jumper switches on the
PC4000 board). The �rst board had the dual ported memory mapped into the segment address
CC00, with the second board mapped to segment address D000.

RTX{2000 Board: The MACH1 board, supplied by MicroAMPS Ltd., shares the advantages of prior
RTX boards which are plug-compatible with a full Ibm Pc expansion slot. It also dedicates about
13 square inches of board area (approximately 1

3
of its full length) to a hardware prototyping area

which is suitable for sophisticated project development. An uncommitted backplane connector
permits the use of a DB-25 or similar connectors to communicate with any other special equipment.

The Harris RTX-2001A is the board's standard microprocessor operating at 8 or 10 MHz and can
be combined with 32 KBytes to 128 KBytes of inexpensive 1- or 0-wait-state Sram (static random-
access memory). The minimum 8 MHz RTX can deliver bursts of 50 Mips (Million Instructions
Per Second) and sustained operations at 12 Mips; the faster 10 MHz chip can deliver sustained
rates of 15 Mips.

Existing Forth cross-compilers using the Forth-83 and PolyForth standards are fully compatible
with the MACH1 board. A version of the Forth++ system was designed to be used with the board
and is now distributed with the board as part of a development package.

1.3 Forth

Forth is an extensible language based on an abstract processor with two stacks (parameter
and return). The Forth interpreter can be seen as a full macro-assembler and fully integrated operating
system for this abstract processor. Due to the size and speed of this abstract processor Forth is a
suitable language for use in \Real-Time" embedded control applications.

It provides us with an interactive debugging environment where we can add new macros (high-
level de�nitions) and new instructions (low-level de�nitions). It even allows us to extend the macro

Practical and Theoretical Aspects of Forth Software Development: Overview 3

system by de�ning new data types (de�ning words). As this interpreter can also act as a fully integrated
operating system, the programmer needs only to learn one set of rules.

However, Forth is not simply a programming language well suited for embedded applications.
It embodies a philosophy of solving problems that is appreciated by the engineers that use it. It has four
primitive virtues: (a) Intimacy, (b) Immediacy, (c) Extensibility and (d) Economy. It has two derived
virtues: Total Comprehension and Symbiosis.

While Forth has advantages over many other languages in the e�ciency of the code produced
and in the development time. More emphasis has been placed on the e�ciency of the language than that
of the programmer in its evolution thus far (Du� and Iverson 1984).

Du� (1986) claims that Forth is seriously limited by its lack of sophisticated, structured and
consistent data de�nition facilities. Forth does not support nested or composite structures and can only
associate a single behavior with a data structure. Du� goes on to suggest that object-oriented techniques
could provide a model for a more advanced data structuring facility within Forth.

Standard Forth is also lacking in a number of other ways when compared to other, similar,
languages. Carr and Kessler (1986) identify four major areas where Forth is lacking:

Symbols: Symbols are distinct from variables. For example given the statement X , when X is interpreted
as a variable, the statement would evaluate X and return its value as the result. When interpreted
as a symbol the statement simply returns the symbol X .

In Forth it would be possible to declare a named constant and then use this as a symbolic name
throughout the program, but it is the programmer's responsibility to make sure that no two distinct
symbols have the same value. Further, if it is possible for the user of the program to input any
arbitrary symbol, the programmer will have to explicitly make provisions for this.

Lists: Any kind of structured data can be represented by a list structure (including lists of lists). Forth
has many examples of lists, arguments to a de�nition, the stacks and wordlists. However, these
are all built into the system and are required for the abstract machine. There is currently no
standard mechanism for a programmer to maintain his own application based list. There have been
a number of implementations of list based data structures, but no mechanism is included as part
of the standard.

Automatic Dereferencing: When referencing a variable one is required to dereference it. Ie, one does not
simply refer to the variable X as this returns the address of the variable. To refer to its value one
is forced to dereference the pointer by writing X @. This not only clutters up the code but requires
conscious thought. It is also a source of many obscure programming bugs when left out.

The majority of languages will automatically dereference a variable for you. You are required to
instruct the compiler not to dereference the variable if you wish to refer to it as a pointer. Ie, in
C one would write `X' to refer to the contents of the variable X and `* X' to refer to the address
holding the value of X .

Named Parameters: As Forth does not have named parameters to a de�nition, they are passed on the
stack, a programmer must concern himself with the intellectual burden of managing the param-
eter stack. By providing a means of associating symbolic names with parameters we release the
programmer from this unnecessary detail by automatically handling the parameter stack.

Du� argues that it is not simply that these facilities are missing from Forth but that they
are missing from the language standard. It would not be too di�cult to extend a given implementation
to provide these facilities, but they must be present in the standard before they can be relied on by an
application developer.

For a full introduction to the Forth language see (Moore 1974; Moore 1980; Brodie 1982; Kogge
1982; Brodie 1984; Stephens and Rodriguez 1986; Rather 1987; ANSI 1991).

Practical and Theoretical Aspects of Forth Software Development: Overview 4

1.4 The Novix NC4000 Forth Engine

In the early 1980's Charles Moore introduced the idea of designing a microprocessor chip around
the Forth language. Later the Novix company produced a RISC based micro-controller that executed
a version of Forth as its native language.

The Novix design takes only 4000 gates in a programmable logic array to implement. The chip
has four di�erent data paths and it is possible to use all four within one machine instruction, thereby
providing the ability to execute up to �ve Forth instructions in one machine cycle. Since the majority
of machine instructions are executed in one clock cycle, a system clocked at 10 MHz has a peak e�ective
throughput of 50 MHz or 50 Mips.

Novix produced this chip and marketed it under the name of \NC4000" (Novix Controller{4000),
although the name was later changed to NC4016 to show that it had a 16 Bit data path. The NC4000
was a \�rst-pass" piece of silicon, and as such it had some hardware problems. A revised version of the
chip was designed (the NC6000) but never produced.

Our industrial partners were interested in any programming techniques that would improve the
e�ciency of their programmers in general and of programming for Novix chip in particular. They foresaw
several projects where the use of a cluster of communicating Novix chips would be of interest.

We were given two NC4000 Ibm Pc plug-in boards, the PC4000 from Silicon Composers, com-
plete with two di�erent development environments. We have developed a system where a programmer
is able to program both Novix systems in a way that they can operate independently and in parallel,
communicate with each other and a host system (Appendix A).

1.5 The Harris RTX-2000 Forth Engine

For various reasons the Novix company had problems which prevented them from producing the
new NC6000 chip, or any more NC4000 chips. As one of the chip designers comments (comp.lang.forth
1992):

Novix made the NC4016. It was a �rst-pass piece of silicon, and had bugs. For various reasons they
didn't get any more chips made, thus the supply of Novix chips ran out. Novix licensed the NC6000
design to Harris.

Harris cleaned up the NC6000 design and made it into the RTX processor core. Harris later acquired
ownership of the Novix patent application and designs (at �rst it was just a license agreement).

The Harris corporation took the NC6000 as a basic design and extended it to produce the RTX-
2000 chip set. The comment goes on to say \this was a long, drawn out, and messy a�air". As Computer
Solutions were acting as agents for Novix in the UK they found themselves without a product, a rival
company having already arranged a supply deal with Harris for the RTX-2000 systems.

This turn of events had a major e�ect on the work that we were doing. Rather than concentrating
on a particular hardware architecture, we focused more of our attention on the programming environment.

To the extent that we were still interested in the hardware architecture, we switched our attention
to the Harris chip. The development work that had been performed up to that stage was now obsolete.
In order to continue with our development work, we obtained a RTX-2000 based system. However,
work with this could not form the main focus of our research as the machine was of little interest to our
industrial partners.

The reasons why we abandoned our interests in the Novix were outlined by one of the design-
ers (comp.lang.forth 1992):

The reason you had to switch from Novix to Harris was because Novix:

1. Didn't come through with �xed versions of its chip.

2. Had di�culties that prevented them from acquiring more chips of even the �rst design.

Practical and Theoretical Aspects of Forth Software Development: Overview 5

3. Had sold the design to Harris, who became the primary supplier.

As we were still interested in the hardware, we purchased a PP2000 board, an RTX-2000 based Ibm Pc
plug in board from SMIS (Surrey Medical Imaging Systems Ltd.). The development software supplied
with the system was a very basic system with little (almost no) host services. We later developed a
version of our Forth system for the processor (Appendix B).

1.6 Networks

Our industrial partners wanted the ability to have several Ibm Pc's around a workshop, all
linked to the one \Master" system, thus giving engineers the ability to interrogate a section of the plant
that the Ibm Pc in question is unable to monitor. Any system we develop would not only have to
operate correctly with multiple processes on the same processor but also with multiple processes on
multiple processors connected via some kind of Local Area Network (lan).

It should be possible to link several processes together, even though they are not physically
located on the same system. By use of a lan it should be possible for one process to send a message
to another process without knowing where the other process is physically located. Where a process is
physical located (on a di�erent or the same machine) is of no interest to the process. It is the responsibility
of the message passing system to hide this information from the process.

We investigated the Ibm NetBios system as a standard for (a generalised method of) interfacing
with lans. The NetBios system is designed to operate in parallel with any application. We have
developed a Forth interface that exploits this ability (Chapter 2). We have also developed several
demonstration programs to show how this system can be used to pass messages from one Ibm Pc to
another, one of which is discussed along with the interface.

1.7 Mixed Languages Interface

There are several Forth systems available that allow the programmer to invoke functions writ-
ten in C. However these systems are either written in C, or are designed with one particular compiler in
mind, thus are \tied" to a given compiler.

Our mixed languages interface is an interface between the Forth programming environment
and any other programming language. The system (described in Chapter 3 and Appendix C) is designed
to interface to code written using Microsoft C, however, the system is language independent, thus allowing
the developer to interface with code written in any language (or second party supplied code). Although
the system was required for the Microsoft C compiler, it was developed with the Turbo C compiler from
Borland. We have tested the \portability" of this system, by compiling the same code under the Microsoft
C, Turbo C, ZorTech C and C++ compilers.

1.8 Formal Methods

Formal notations provide a way of specifying a problem in a precise mathematical notation.
The speci�cation is an abstract mathematical model of the problem, describing what the system has to
do, rather than how it is to be done. The notations use set theory and �rst-order predicate logic to build
such models. There are several reasons for using formal notations:

Understanding: A formal speci�cation can be passed from one person to another without the possibility
of misunderstanding. Due to the ambiguity of natural language, we can never be certain if another
person fully understands our meaning from a statement. When using formal notations we can be
sure that our exact meaning is presented, as we are using a precise mathematical language (Spivey
1989; McMorran and Nicholls 1989).

Practical and Theoretical Aspects of Forth Software Development: Overview 6

Manageability: It has been found that, when specifying large systems, the formal speci�cation is a
great deal smaller than the natural language speci�cation. Additionally, the writing of the formal
speci�cation can bring out some of the more complex problems that would have remained hidden
in the natural language speci�cation (Hayes 1987; Nash 1989; Phillips 1989).

Reasoning: As the speci�cation has been written using a formal notation that is �rmly grounded in
mathematics, we can mathematically reason about the speci�cation (Woodcock and Loomes 1988;
Morgan 1990).

Requirement: There are several companies that now insist on the use of formal methods on safety
critical systems. The British Ministry of Defence require formal methods to be used on high level
safety critical systems. Lloyds Register now advises that a formal model of all new safety critical
systems should be presented before insurance cover is issued.

1.8.1 Formal Forth

As the Forth language is predominantly used in the �elds of real-time process control and
safety critical systems, it will become necessary to have the ability to prove that a program meets its
speci�cation in every detail.

As the use of formal methods becomes more widespread, it is becoming more important that
systems are developed from a formal speci�cation. Lloyds Register now recommend that highly safety
critical systems are formally modelled before implementation. The British Ministry of Defence now insist
that all \safety critical" software is formally speci�ed.

Due to the philosophies behind Forth and the nature of the Forth abstract machine, it is
possible to provide a set of tools that will aid a designer/programmer in ascertaining whether a Forth
program meets its (formal) speci�cation. We have performed preliminary work that has laid down the
foundations of such a system (Chapter 4). We have provided a mathematical toolset that will allow
designers to produce mathematical models of their actual program thus allowing them to conduct proofs
on the program and to compare them against proofs conducted on the speci�cation.

In this toolset, we treat the stacks as a sequence of untyped elements. This has lead to the
development of a compiler optimisation technique that uses this idea (Chapter 5). It keeps the top
three elements of the stack in internal registers (this is only applicable to systems with large register
�les). Unlike traditional system that keep the items in speci�c registers, our system allocates the internal
registers dynamically . We use a stack image to keep track of which stack element is in which register,
thus it is possible to obtain 100% optimisation on certain stack manipulation operations.

1.8.2 Type Algebra

One of the limitations of programming in Forth is also one of its major advantages. We refer
to the use of a parameter stack for the holding and passing of parameters. The use of a parameter stack
allows us to write re-entrant code very simply. It means that the programmer must keep an image of
the stack in his mind whilst programming. As the stack is e�ectively type-less it allows him to \cast"
data items without recourse to ine�cient subroutines (as in C). This ability is one used by most Forth
programmers and can assist in keeping program development time down.

This ability also carries with it a problem when the programmer is unable to keep track of all of
the items on the stack. As the system e�ectively performs all casting for him, it is possible for him to cast
an item that is not required at that point. For example, to convert an integer into an execution-token.

Jaanus P�oial, of Tartu University, has developed a \Stack Type Algebra" that provides the
capability of checking for such unintended type mismatches (P�oial 1990). This system works when all
stack items are of a known type. We have developed a similar algebra based around his ideas. Our type
algebra (presented in Chapter 6) includes the capability of handling items of variable type, in addition to
catering for program structures and conditional execution. We have used the rules from this algebra to

Practical and Theoretical Aspects of Forth Software Development: Overview 7

specify the action of a \type checker" program (Chapter 7) that should be able to scan a Forth program
and state whether it is \type correct".

1.8.3 The Event Calculus

The \Event Calculus" is a diagrammatic notation which provides an easily used means of for-
mally specifying the behaviour of concurrent systems (Chapter 8). It can describe synchronous and
asynchronous communications, data ow modelling and function application, and the expression of tem-
poral constraints. It also has the ability to abbreviate the description of complex state changes, such as
data base updates via the use of Z schemas. See (Woodcock and Loomes 1988; Spivey 1989; Diller 1990)
for an introduction to the Z notation.

Due to the diagrammatic nature of the calculus, it appears relatively easy for a non specialist to
use when compared to other (event based) process algebras such as csp (Hoare 1985), ccs (Milner 1989)
and lotos (Brinksma and Bolognesi 1987). As the calculus is also based on formal notations, it gives
good control of levels of abstraction that can be used in a model. As a speci�cation produced using the
calculus has an underlying formal speci�cation, it is possible to use this speci�cation for deriving proofs
of the system begin modelled.

8

Chapter 2

Using IBM's NETBIOS

A general overview of the Ibm NetBios system is given and its Multi-Tasking abilities are
discussed. A Forth interface that exploits these is presented and a \Net-Chat" program, which illustrates
the integration of NetBios with Forth's Multi-Tasker is described.

2.1 Introduction

The Network Basic I nput/Output System (NetBios) is an \application program interface"
(Ibm Corporation 1987) between an application task and a Local Area N etwork (Lan) designed to provide
a common communication capability between Ibm Pcs and compatibles. It has been implemented on a
wide variety of physical networks including Ethernet, Token ring, Insertion ring, etc.

NetBios provides a communication link (or connection) between
named entities using two main forms of communication, known as sessions and datagrams. Any ap-
plication may add a name to the network. In a Forth Multi-Tasking system it would be possible to
provide two separate application tasks, each with its associated name, on the same host machine. The
two tasks would then communicate with each other using the NetBios and neither task need know where
the other is situated.

All requests to the NetBios are made using a N etwork Control B lock (ncb) supplied by the
application program. The ncb holds parameters for the network call and, on completion, contains status
information.

2.2 Functions

The functions provided by NetBios can be broken down into �ve groups: Naming, Sessions,
Datagrams, Broadcasting and General Housekeeping. (See (Ibm Corporation 1987) or (Nine Tiles 1988b)
for a complete breakdown of the NetBios functions.)

2.2.1 Naming

Each network card has its own unique physical name. To use this name in an application
would be too restrictive as such an application would be forced to know with which physical system to
communicate. NetBios provides some naming capabilities to allow applications to refer to logical, rather
than physical, names thus allowing a network application to be independent of any physical machine.

The Add Name function will add a unique name to the network. This will provide a logical
name for the physical system performing the add name function. Each physical system may have several
logical names that could be used by di�erent tasks or applications.

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 9

The function Add Group Name will add a group name to the network. Several machines may
have the same group name and will then be classed as members of the same group. This facilitates
communication to a selected group of machines.

Remove is used to remove a name from the Network. If the name is an individual name, the
name is completely removed. If it is a group name, the machine is removed from the group.

2.2.2 Sessions

A Session provides a one-to-one connection, analogous to a telephone call.

A Session is started by one application making a call to another. The called application must be
listening for an incoming call. To call another application, the Call function is used. The Listen function
is used to wait for an incoming call, while Hangup is used to disconnect the call. If you call a group
name, only one member of the group will receive the call.

Once the connection has been established, the applications can exchange data (up to 64K at a
time) with the guarantee that it will arrive. To exchange data, one application must use the Transmit
function while the other is using a Receive function. If one side issues a transmit before the other has
issued the corresponding receive, the data will be bu�ered until the receive is issued.

2.2.3 Datagrams

A datagram is a one-shot communication of up to 512 bytes.

A Datagram Transmit will send a datagram to a given name. The receiving name must be
waiting to receive it otherwise it will be lost. When a datagram is sent to an individual name, only that
name will receive it. However, if it is sent to a group name, all the members of that group will receive a
copy.

A Datagram Receive will wait for a datagram to be received by a given name. A datagram
transmitted from any name to the given name will be accepted.

2.2.4 Broadcasting

A Broadcast is a special form of datagram that is sent to all names. The Broadcast Transmit
function will send a datagram to all names known to the network. The Broadcast Receive function is
similar to the datagram receive function, except it will only receive a Broadcast message.

2.2.5 House keeping

There are four basic functions that are designed for the network manager to control the network
system. The Reset function is used to totally reset the network card. Network Status will return the
current status of the network card. A Cancel function is used to cancel a given command. Finally the
Un-Link function disconnects from a remote disk server.

2.3 Invoking NetBios Functions

All NetBios functions are invoked in the same manner. The data required by the function is
placed in the relevant �elds of the ncb and the NetBios system call is invoked. This will take the ncb
and post it into the NetBios for processing. The actual processing of the function is interrupt driven
and will run concurrently with the application program.

NetBios has three di�erent ways of returning back to the application program. The �rst is
referred to as a Wait function, where NetBios will process the complete function before returning to
the application.

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 10

The second is to post a No-Wait function. NetBios will add the function to its internal list
of functions and return to the application directly. The application program must poll the \command
complete" ag of the ncb to determine if the NetBios has completed the function.

The �nal method is to post a No-Wait function giving the address of an interrupt routine. The
NetBios will add the function request to its internal list and return to the application program. When
the function has been completed, it will invoke the given interrupt code.

2.4 Multi-Tasking

In order to exploit the concurrent execution abilities of Forth and the NetBios, we use the
\No-Wait with Interrupt" invocation method. When a NetBios function is used, the invoking task will
typically execute a STOP after making the NetBios call.

In the Forth/NetBios interface, a �eld has been added to the ncb to store the identity of
the invoking task. The interrupt routine passed to the NetBios is always a \wake task" routine that
extracts the task identity from the ncb and sets the task status to active, thus waking the task associated
with the NetBios function.

More than one task can have a NetBios request pending. For example, one task may be
waiting on a Broadcast Receive, whilst another is waiting on a Datagram Transmit. Any one task may
have several NetBios requests pending. For example, in the \Net-Chat" application, one of the tasks
posts four Datagram Receive requests to ensure that no incoming datagrams are lost (see sections 2.5.2
and 2.9). When the task is made active it has to poll the ncbs of the pending commands in order to
discover which of them has completed.

2.5 Examples

In this section we provide the reader with two examples of how the Forth/NetBios interface
can be used.

2.5.1 Block Transfer

To transfer a block of data from one system to another, both systems must make themselves
known to the network. This would be done by each of them creating an ncb. They would then add their
individual names to the network.

System 1 System 2

NEWNCB NCB

" PETER" NCB ADD-NAME

NEWNCB NCB

" JOHN" NCB ADD-NAME

Now PETER may call JOHN. The connection is made when Peter is calling John and John is listening for a
call from Peter (or when John makes a call to Peter, although Peter must be listening for the call in this
case).

" JOHN" NCB PHONE

STOP

" PETER" NCB LISTEN

STOP

PETER will now send a block of data over the network to JOHN.

9 BLOCK (Address of bu�er)
1024 (Number of bytes)
NCB (NCB to use)
TX STOP (Transmit)

10 BLOCK (Address of bu�er)
1024 (Number of bytes)
NCB (NCB to use)
RX STOP (Receive)

One of the systems must now disconnect. Our convention is that the caller is in charge of the connection
and hence is responsible for the disconnection.

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 11

NCB HANGUP (Disconnect)

The STOPs are required to allow other tasks to continue executing and to synchronise communications.

2.5.2 Net-Chat

A simple example application program has been developed along the lines of the \Net-Chat"
program by Glass (1989). This is a Citizen Band radio emulation, in that if anyone sends a message over
\Net-Chat", it will be received by all other systems running the application.

The basic principle to a \Net-Chat" implementation is to have a group name of \NET-CHAT"
and an individual name for each person on the system. The screen is divided into two sections with a
small 5 line window provided for the Net-Chat display and a larger second window displaying the normal
OPERATOR environment.

A task (\CHAT-TASK") will post four Datagram Receive requests on the group name NET-CHAT.
When a datagram is sent to NET-CHAT, all the members in the group will receive a copy (including the
sender). When receiving messages, CHAT-TASK will scan through the ncbs to discover which one was
honoured. It will take the message bu�er of the ncb, display it in the Net-Chat window and will use the
ncb to post a new Datagram Receive request. If only a single Datagram Receive was posted, it would be
possible to miss a datagram that arrives between the previous datagram being received and the Datagram
Receive request being re-posted.

To send a message, the user must type the word CHAT. This will ask for a message to be sent.
It will send the message bu�er to the group name NET-CHAT.

The code and a more detailed description, is given in section 2.9.

2.6 Problems

As this system was originally intended for use with the Novix micro-processor system, it was
developed using the PolyForth system. It was later ported to the Forth++ system (see chapter 1). In
this section we describe some of the problems that had to be overcome before this system became fully
operational.

2.6.1 PolyForth

The PolyForth system operated correctly when used in a network based environment. When
we loaded the NetBios interface code, the system stopped operating altogether. The PolyForth code
appeared to be correct while the interface code also appeared to be correct.

After some experimentation, we discovered that the problem only occurred when the PolyForth
serial communications package was loaded. By forcing the system not to load this package, the problem
was overcome. In order to continue with this project, it was necessary to convert this system for use with
the Forth++ system. Thus, the real cause of the problem was never investigated.

2.6.2 Interrupts

The original version of this system used the No-Wait and Poll method of posting a NetBios
function. This meant that when an application task had posted a NetBios function, it would enter
a loop testing the command complete ag of the relevant ncb. As the task is actively waiting for the
function to complete, it is scheduled for time by the multi-tasking scheduler.

The system was redeveloped to take advantage of the \No-Wait with Interrupt" ability of the
NetBios. The system developed to utilise this facility is described in section 2.4. The task posting a
NetBios function is allowed to continue execution. Eventually the task will execute a STOP. When the
NetBios function has been completed the NetBios will invoke the given interrupt code. This code will
reset the associated task's status to active thereby making sure that the task will be executed.

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 12

This allows a task to post as many NetBios functions as it requires. It also allows the task to
be removed from the scheduler's active tasks list. When the NetBios function has completed1 it will
add the task to the active task list, thus removing the responsibility of polling the command complete
ag altogether.

2.6.3 Porting

The port from PolyForth to Forth++ was a very simple one with only one small problem.
None of the code had to be changed with the exception of the two machine code words.

The PolyForth assembler system is designed to be as processor independent as possible, while
the assembler provided with the Forth++ system is designed around the Intel 80x86 family of processors.
The two machine code words had to be converted from the PolyForth assembler form into the Forth++
form. The function of the code was not altered in any way, nor was the machine code produced altered.
The only alteration was to the source code in order to produce the same object code.

We also took this opportunity to exploit Forth++'s ability of holding 64 KBytes of strings to
enhance the error messages and improve the error handling provided by the interface.

2.7 Comparison with C interface

When compiled, the NetBios interface shown in section 2.8 forms a run-time library. The
library comprises of 186 lines of Forth code and compiles to just 1.2 KBytes (when compiled under
Forth++). A simple C interface (taken from Schwaderer (1988)) takes some 110 lines of code (1.8 KBytes
when compiled) and 270 lines of compile time de�nitions to provide the same functionality as the (net)

word. The C interface requires the application developer to have a full knowledge of the NetBios and
the ncb. A full C library that provides the same functionality as the interface shown in section 2.8
requires some 115 KBytes (when compiled).

As the C language does not directly cater for multi-tasking, such an interface has to use the
No-Wait or No-Wait and Poll techniques for invoking a NetBios function. Using the No-Wait and Pool
technique puts the onus on the application programmer to poll the command complete ag, thus does
not provide the full abstraction one might hope for.

2.8 Interface Code

The following is an annotated source listing of the NetBios Interface provided for use with the
Forth++ system.

2.8.1 Error Handler

Here we de�ne the word \(netable)" to display an understandable network error message. It
only displays the errors documented in the NetBios manual (Ibm Corporation 1987). Any error code
not de�ned in the manual will be displayed as \Unknown".

HEX

: (netable)

CASES

01 CASE ." Illegal Buffer Length" END-CASE

03 CASE ." Illegal Command" END-CASE

05 CASE ." Timed Out" END-CASE

06 CASE ." Message Incomplete" END-CASE

08 CASE ." Illegal Session Number" END-CASE

1or any one of the NetBios functions associated with the task has completed.

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 13

09 CASE ." No Resource Available" END-CASE

0A CASE ." Session Closed" END-CASE

0B CASE ." Command Cancelled" END-CASE

0D CASE ." Local Duplicate Name" END-CASE

0E CASE ." Name Table Full" END-CASE

0F CASE ." Name Not Registered" END-CASE

11 CASE ." Session Table Full" END-CASE

12 CASE ." Call Rejected" END-CASE

13 CASE ." Illegal Name Number" END-CASE

14 CASE ." Destination Not Found" END-CASE

15 CASE ." Name Not Found" END-CASE

16 CASE ." Remote Duplicate Name" END-CASE

17 CASE ." Name Deleted" END-CASE

18 CASE ." Session Aborted" END-CASE

21 CASE ." NetBios is busy" END-CASE

23 CASE ." Invalid LAN number" END-CASE

24 CASE ." Command not found" END-CASE

26 CASE ." Illegal Cancel Command" END-CASE

34 CASE ." Illegal Data Format" END-CASE

DROP

." Unknown"

END-CASES

;

We now de�ne the default action to be taken when a network error occurs. This is de�ned in the word
(neterror), it will abort the current operation and display an error message of the form:

Network Error code: 15 (Name Not Found)

Displaying the network return code and a text message relating to the code (if known). Note that the
word ?CASE takes a ag of the stack and executes the code between the ?CASE and the END-CASE if the
ag is true, otherwise it simply skips over the code.

: (neterror) (n --)

CR ." Network Error code: " DUP . ASCII (EMIT

CASES

FF CASE ." Not Finished" END-CASE

DUP 50 FF WITHIN ?CASE ." Hardware Fault" DROP END-CASE

DUP 40 50 WITHIN ?CASE ." Unusual Condition" DROP END-CASE

(netable)

END-CASES

ASCII) EMIT CR ABORT

;

DECIMAL

Next we de�ne the network error handling. This is provided by the word NETERROR, it takes the NetBios
return code and invokes the word, the execution token of which is stored in the user variable 'NETERROR,
if there has been an error, otherwise it simply removes the return code. The de�ning word USER* is used
to de�ne a user variable at the next free slot in the user area.

USER* 'NETERROR

: NETERROR (n --)

?DUP IF 'NETERROR @ EXECUTE THEN

;

Finally we initialise the network error handler to be our default error handler.

' (neterror) 'NETERROR !

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 14

2.8.2 Network Control Block

In this part of the system we de�ne the logical names for the �elds of the network control block
(ncb), these are the names as given in the manual. It should be noted that we are using the @ symbol to
indicate a segment and o�set pair in accordance with the manual. The run-time action of these words is
to return the address of the given �eld in the given ncb.

The word pos is a de�ning word, the size of the �eld (in bytes) is given on the stack, pos will
then de�ne a word, the action of which is to add the required byte o�set to an address in order to give
the address of the required �eld. We have added the TASK@ �eld to hold the address of the invoking
task. This is not part of the standard ncb structure but has been added to allow the interrupt routine
to identify the associated task. Finally, the constant ncb_size is de�ned to hold the size of our ncb
structure (in bytes).

: pos CREATE OVER C, + DOES> C@ + ;

0 \ Initial byte count

1 pos CMD 1 pos RETCODE 1 pos LSN 1 pos NUM

4 pos BUFFER@ 2 pos LENGTH 16 pos CALLNAME 16 pos NAME

1 pos RTO 1 pos STO 4 pos POST@ 1 pos LANA_NUM

1 pos CMD_CPLT 14 pos RESERVED 4 pos TASK@

CONSTANT ncb_size

Next we de�ne some ncb control words. The �rst of these is NEWNCB, this will allocate ncb_size bytes
of memory to act as an ncb. It also creates a word, the action of which is to place the address of this
memory area onto the stack.

: NEWNCB (--)

CREATE HERE ncb_size DUP ALLOT ERASE

;

The second control word is TIME-OUT, this is used to set the \Receive" and \Send" time-outs for a given
ncb. The time-outs are given in increments of 1

2
seconds. The system is initialised to no time-outs by

default.

: TIME-OUT (Receive-Time-Out Send-Time-Out NCB --)

DUP STO ROT SWAP C! RTO C!

;

The last of the ncb control words is COPYNCB. This is used to copy the data from one ncb to another.

: COPYNCB (Source-NCB Destination-NCB --) ncb_size CMOVE ;

2.8.3 Assembler Interface

This is where we have developed the assembler code that interfaces between the Forth++
system and the NetBios.

First, we de�ne a word FIELD that returns the byte o�set of a named �eld in the ncb. As this
word is being de�ned exclusively for use in code level de�nitions, we place its de�nition in the ASSEMBLER

wordlist.

ASSEMBLER DEFINITIONS

: FIELD ' >BODY C@ ;

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 15

FORTH DEFINITIONS

We now de�ne the assembler word (post). This is the code that will be invoked by NetBios when it
has completed a No-Wait with Interrupt operation. On entry to this code, the ES:BX register pair are
pointing to the start of the ncb that has completed.

This code is invoked by an interrupt request from the NetBios. As a result, we can not make
any assumptions about the state of the system (other than the value of ES:BX). The code given in (post)

uses the address stored in the TASK@ �eld of the ncb to discover which task is related to the ncb. It will
then place a 1 in that task's STATUS variable, thereby adding that task to the scheduler active task list.

CREATE-INTERRUPT (post)

DS PUSHSEG BX PUSH AX PUSH ES AX MOV AX DS MOV

FIELD TASK@ 2+) BX@ AX MOV AX PUSH

FIELD TASK@) BX@ AX MOV AX BX MOV

DS POPSEG 1 # USER STATUS MOV

AX POP BX POP DS POPSEG

IRET

END-CODE

This code is given as it is provided in the Forth++ interface. We now give the code again in a commented
Intel assembler format.

post: push ds ; Save the registers

push bx ; we are going to use

push ax

mov ax,es ; Copy ES to DS

mov ds,ax

mov ax,[bx+66] ; Get the DS for the task

push ax ; Save it for later

mov ax,[bx+64] ; Get the offset of the task

mov bx,ax ; Save in BX

pop ds ; Recover task's DS

mov [bx+0],#1 ; Set task's status to active

pop ax ; Recover registers

pop bx

pop ds

iret ; Return from interrupt

The next word we de�ne is (net). This word will initialise the ncb with a given command (CMD), bu�er
(BUFFER@) and post routine (POST@). It will then invoke the NetBios interrupt asking the NetBios to
perform the function indicated by the command number. The POST@ value passed to this word is the
16 bit o�set of the (post) routine. If this o�set is 0, an address of 0000:0000 is placed in the POST@

�eld. When the NetBios returns from the interrupt it provides a \return value" that is passed back to
the calling word.

HEX

CODE (net) (NCB Buffer Command 'Post -- Retcode)

CX POP AX POP DX POP DI POP

AL FIELD CMD) DI@ MOV DS AX MOV

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 16

AX FIELD BUFFER@ 2+) DI@ MOV DX FIELD BUFFER@) DI@ MOV

CX AX MOV 0 # AX = NOT IF CS AX MOV THEN

AX FIELD POST@ 2+) DI@ MOV CX FIELD POST@) DI@ MOV

DS AX MOV

AX FIELD TASK@ 2+) DI@ MOV BX FIELD TASK@) DI@ MOV

ES PUSHSEG BX PUSH DS AX MOV AX ES MOV DI BX MOV

5C INT BX POP ES POPSEG 0 # AH MOV AX PUSH

NEXT

END-CODE

DECIMAL

Again, this code is given as it is provided in the Forth++ interface. We now give a version of the same
code, with comments, in Intel assembler format.

net: pop cx ; CX = POST@ offset

pop ax ; AX = NetBios command

pop dx ; DX = BUFFER@ offset

pop di ; DI = NCB offset

mov [di+00],al ; Set NetBios command in the NCB

mov ax,ds

mov [di+06],ax ; Set the BUFFER@ segment to the current DS

mov [di+04],dx ; Set BUFFER@ to the given offset

mov ax,cx ; Is POST@ offset zero?

cmp ax,#0

jne $1 ; Yes, then AX and CX = 0

mov ax,cs ; No, then set AX to current CS

$1: mov [di+46],ax ; Set POST@ segment to CS (0000 if CX=0000)

mov [di+44],cx ; Set POST@ offset to CX

mov ax,ds

mov [di+66],ax ; Set TASK@ segment to current DS

mov [di+64],bx ; Set TASK@ offset to task user area

push es ; Save registers ES:BX

push bx

mov ax,ds

mov es,ax ; ES:BX = NCB address

mov bx,di

int 5Ch ; Invoke NetBios interrupt

pop bx ; Recover ES:BX

pop es

mov ah,#0 ; Clear top byte of "Return Value"

push ax ; Return "Return value"

NEXT ; Re-enter inner interpreter

2.8.4 Low-Level interface

The next part of the interface de�nes the low-level Forth words that are used to interface with
the assembler de�nitions.

The �rst of these words is +NET. It will post a NetBios function and wait for it to complete
before returning. It will then process the \Return Value", checking it for errors.

: +NET (Buffer NCB Command --)

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 17

ROT SWAP 0 (net) NETERROR

;

The second word being -NET which will post a network function to the NetBios system using the No-
Wait with Interrupt variant of the command. The calling task will be placed in the scheduler's active list
on completion of the function. However, the task is not removed from the active list by this word. This
is left to the application.

: -NET (Buffer NCB Command --)

128 OR ROT SWAP (post) (net) NETERROR

;

We now de�ne the word COMPLETE to check the ncb command complete
(CMD_CPLT) ag. It will return a TRUE when the function has completed. This word is provided so
that an application may test which of several possible NetBios commands has been honoured (see
sections 2.4 and 2.5.2 for a description of its use and section 2.9.2 for an example of its use).

: COMPLETE (NCB -- f)

CMD_CPLT C@ 255 = NOT

;

The �nal de�nition in this section is NERROR which is used in conjunction with the COMPLETE word. It
will check the return code (RETCODE) of a given ncb returning the NetBios return code, if the function
associated with the ncb has completed, otherwise it returns a -1.

: NERROR (NCB -- n)

DUP COMPLETE IF RETCODE C@ ELSE DROP -1 THEN

;

2.8.5 General Support

Here we de�ne a number of words for the general administration of the network. Most of these
commands would only be used by a supervisor or supervising software. These commands do not have
No-Wait variants, thus they all wait for the NetBios command to complete before returning to the
caller.

NET-RESET will Reset the network with the support for the given number of sessions and the
given number of outstanding commands using the given ncb.

: NET-RESET (#sessions #commands NCB --)

DUP >R NUM C! R@ LSN C! 0 R> 50 +NET

;

NET-CANCEL is used to Cancel a NetBios command. The NetBios command associated with NCB1 is
cancelled (removed from the command-pending list). Due to the way that the NetBios system operates,
it requires a second ncb to be used to issue the cancel command.

: NET-CANCEL (NCB1 NCB2 --) 53 +NET ;

The UNLINK word will disconnect the node from the \Remote Program Link". This is only used when
booting the system over a network.

: UNLINK (NCB --) DUP 112 +NET ;

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 18

Finally the NET-STAT word returns the current status of the network to the given bu�er (addr) of a given
maximum size (len1 bytes). Returning the number of bytes (len2) of actual data received. This data is
dependent on both the network hardware and the particular NetBios implementation.

: NET-STAT (addr len1 NCB -- len2)

SWAP OVER LENGTH DUP >R ! DUP CALLNAME ASCII * SWAP C!

51 +NET R> @

;

2.8.6 Naming Support

In this section we de�ne the Forth words that will give the programmer access to the NetBios
\Naming" functions.

Firstly, the word (name) is de�ned. This word takes a counted string (s) as a symbolic name.
It will place the name in the given NCB's NAME �eld. This takes a �xed 16 character name, thus (name)

also pads out the �eld with zeros. Having copied the name into the NAME �eld, it will then invoke the
NetBios function given in n (either Add Name or Add Group Name). Notice that it uses +NET to invoke
the function, thus the system will wait for the name to be added to the local name table before returning.
This word forms the bases of both the ADD-NAME and ADD-GROUP words.

: (name) (s NCB n --)

>R DUP NAME DUP 16 ERASE ROT COUNT ROT SWAP CMOVE

0 SWAP R> +NET

;

The word ADD-NAME is used to add an individual name to the list of logical names for this node. It takes
a counted string (s) and an NCB. It will add the name to the system, associating the name with the ncb.
Any command sent out using that ncb will be issued under the given name. You must copy the ncb if
you wish to post more than one (simultaneous) command under this name.

: ADD-NAME (s NCB --) 48 (name) ;

The ADD-GROUP command works in much the same way as the ADD-NAME command with the one exception
that the name added to the local node is a group name. Thus several di�erent nodes may be known by
the same name.

: ADD-GROUP (s NCB --) 54 (name) ;

The �nal word in this section is REMOVE-NAME. This will remove the name associated with the NCB from
the local name table. If the ncb is associated with a group name, the node is removed from the group.
The name is disassociated from the NCB, thus allowing the NCB to be associated with another name.

: REMOVE-NAME (NCB --) 0 SWAP 49 +NET ;

2.8.7 Session Support

In this section, we provide words that allow the application programmer to access the session
handling facility of the NetBios.

Before we de�ne the words that the application programmer is to use, we �rst de�ne two words
that perform most of the operations. These words are internal to the interface and are not meant to be
used by the application programmer.

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 19

The �rst of these is (cname) which takes a counted string (s) and places it in the CALLNAME

�eld of the given NCB. As with the (name) word, this also pads the �eld out to 16 characters by adding
zeros. (cname) not only leaves the ncb address on the stack, it also places a 0 onto the stack to be used
as a null bu�er address. See the words PHONE and LISTEN to see how the word is used.

: (cname) (s NCB -- 0 NCB)

DUP CALLNAME DUP 16 ERASE ROT COUNT ROT SWAP CMOVE 0 SWAP

;

The second internal word is (len). This will simply place the given bu�er length (len) into the LENGTH

�eld of the given NCB without removing the ncb address from the stack.

: (len) (len NCB -- NCB)

SWAP OVER LENGTH !

;

Having de�ned the two supporting words, we can now go on to de�ne the words that the application
programmer will use to gain access to the NetBios session capability. As we have already likened a
session connection to a telephone connection, we use telephone-like words in our interface.

The word PHONE is used to establish a connection. This is similar to making a telephone call
where you give the name of the recipient as a counted string (s). If the call is being made to a group
name, only one member of the group will receive the call. The NetBios selects the group member, a
one-to-one connection is made with one of the group members. The particular member is not known and
is non-deterministic.

: PHONE (s NCB --) (cname) 16 -NET ;

The word LISTEN is similar to listening for a telephone call. You give the name of the node you are
waiting to hear from as a counted string (s). However, you will only hear calls from that node, if another
node is attempting to contact this name, the listen command will not register the call. When a call is
detected, a connection (session) is established on both nodes.

There is a special name of *" that will listen for a call from anyone. When a call is detected,
the session (connection) is established and the name of the caller is placed in the CALLNAME �eld of the
ncb.

: LISTEN (s NCB --) (cname) 17 -NET ;

The word HANGUP is used to disconnect the session. This is similar to someone hanging up the telephone
to break the connection. We use the same convention as is used for telephones in that the caller is
responsible for clearing the connection.

: HANGUP (NCB --) 0 SWAP 18 -NET ;

We now have the words that will allow one to set up a connection but we are still unable to
transfer data over this connection. The next two words provide this capability. The connection must be
established prior to any attempt to transmit data.

To transmit data over the connection (to source the data) we use the TX word. This takes a bu�er
(buff) of len bytes (the maximum bu�er size being 64 KBytes) and transmits it over the connection.
As this is a session connection NetBios provides a guarantee that the data will arrive.

: TX (Buff Len NCB --) (len) 20 -NET ;

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 20

To sink (receive) the data the RX word is used. We give the system a bu�er area (buff) with a maximum
size of len bytes where it can place the data when it is received. When data has been received, the
LENGTH �eld of the ncb will hold the actual number of bytes received. If the bu�er is not large enough to
hold all the data, the system will bu�er the remaining data internally and report an error. Under these
conditions an error code of 6 is placed in the RETCODE �eld of the ncb. It is the responsibility of the
application programmer to detect and act on this condition by issuing another receive request.

: RX (Buff Len NCB --) (len) 21 -NET ;

The �nal word in this section is CALL-STAT which is used to obtain status information on the connection
(session) associated with the given NCB. It is given a bu�er (buff) of len1 bytes into which it will place
the current status. The CALL-STAT word will return the actual number of bytes used (len2) by the status
information. The status information returned by this word is partly de�ned, however a large part of the
data is dependent on the NetBios implementation.

: CALL-STAT (Buff Len1 NCB -- Len2)

SWAP OVER LENGTH DUP >R ! 52 +NET R> @

;

2.8.8 Datagram Support

This is where we develop the Forth words that will give the application programmer access
to the \Datagram" communication level provided by the NetBios. A datagram can be thought of as a
packet of up to 512 bytes on the network. Unlike session communication, there is no built-in protocol
associated with datagrams. The receiving node must be listening for an incoming datagram, otherwise
it will not receive it. The NetBios provides no guarantee that the datagram will be delivered.

The �rst word we de�ne in this section is DTX, the Datagram Transmit function. This will take
an area of memory (buff) of len bytes in length (maximum size being 512 Bytes). This is sent, as a
single unit, to the indicated node (whose name is given as the counted string s).

Notice how this word uses (cname) to copy the destination node name into the CALLNAME �eld
of the ncb. The NIP is required to disregard the extra 0 that (cname) places on the stack. We use (len)

to copy the byte length into the LENGTH �eld of the ncb. We can make the NetBios call with the -NET

word.

: DTX (Buff Len s NCB --)

(cname) NIP (len) 32 -NET

;

The Datagram Receive function is provided by the word DRX. This is given an area of memory to place
the received data (buff) which is a maximum size of len bytes (maximum bu�er size is 512 bytes). This
word will wait for an incoming datagram addressed to the name associated with the ncb. On receiving a
datagram, it will place as much data as it can in the bu�er returning the actual number of bytes received
in the LENGTH �eld of the ncb. Note that if the received datagram was too large for the receiving bu�er,
the bu�er is �lled, the remaining data is lost, and a return value of 6 is given (in the RETCODE �eld).
The name of the sending node is placed in the CALLNAME �eld. See section 2.9.2 for an example of using
datagrams.

: DRX (Buff Len NCB --) (len) 33 -NET ;

2.8.9 Broadcast Support

In this, the �nal part of the interface, we de�ne the words that provide access to the NetBios
\Broadcast" commands. A broadcast can be thought of as sending a datagram to everybody. If you are

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 21

not listening for a broadcast, you will miss it. Like the datagram it will not be bu�ered for you. As with
datagram support, we only need two words to provide broadcast support, one to transmit and one to
receive.

The �rst of these words is BTX, providing the Broadcast Transmit function. This takes the
address of the memory bu�er (buff) of len bytes in length (maximum size of 512 bytes). The data is
then transmitted to every node on the system.

: BTX (Buff Len NCB --) (len) 34 -NET ;

The second word required to provide broadcast support is BRX, providing the Broadcast Receive function.
As with DRX, the address of a receive bu�er is given (buff) with a maximum length of len (maximum
bu�er size is 512 bytes). When the system receives a broadcast message, it will place up to len bytes in
the bu�er loosing any additional data. The LENGTH �eld holds the actual number of bytes received. The
CALLNAME �eld will hold the name of the sending node. If more than one Broadcast Receive is posted,
they will all receive the same message.

: BRX (Buff Len NCB --) (len) 35 -NET ;

It should be noted that the words (netable), (neterror), pos, FIELD, (post), (net), +NET,
-NET, (name), (cname) and (len) are internal to the interface and should not be used when programming
applications with this package.

2.9 The \Net-Chat" Application

The following is an annotated source listing of the \Net-Chat" example application as described
in Section 2.5.2.

2.9.1 Memory Bu�ers

The �rst part of the application is to reserve the memory bu�ers that are going to be used. This
section not only reserves the memory but also de�nes words that allow easy access to this memory.

We are going to require �ve ncbs and bu�ers. We �rst reserve the space for the �ve ncbs (one
outgoing, four incoming). The number of bytes to reserve is calculated by multiplying the number of
bytes required for an ncb (ncb_size) by �ve. We then initialise this memory to zeros using the ERASE

word.

CREATE ncbs ncb_size 5 * ALLOT ncbs ncb_size 5 * ERASE

Thus the word ncbs will return the start address of a block of memory large enough to hold �ve ncbs.
We now de�ne a word NCB that take an ncb number and returns the address of the indicated ncb from
our table.

: NCB (n -- NCB) ncb_size * ncbs + ;

Now we do the same for the data bu�ers. This time the bu�ers are 60 bytes long and is given the name
buff, while the accessing word is called BUFF.

CREATE buff 60 5 * ALLOT buff 60 5 * ERASE

: BUFF (n -- buff) 60 * buff + ;

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 22

We now de�ne the word name that takes an ncb number and initialises the stack ready for a NetBios
call to the Datagram Receive function, placing the corresponding bu�er address (buff), the maximum
size of the bu�er (60) and the indicated ncb (NCB) on the stack.

: name (n -- buff 60 NCB)

DUP BUFF SWAP NCB 60 SWAP

;

2.9.2 Listening

In this section we de�ne the \Listening" part of the application. This code will post four
Datagram Receives to the NetBios and wait for one of them to be honoured. It will then display the
name of the sender and a one line message.

The �rst item to de�ne is the actor that is going to execute the code (CHAT-TASK). The actor is
de�ned now so as to indicate that all the code that follows (upto the CONSTRUCT word) will be performed
by the actor concurrently with the main system.

ACTOR CHAT-TASK

The �rst word we de�ne in the section is NET-LISTEN which simply posts four Datagram Receive functions
which will operate in unison. It should be noted that ncb 0 has been reserved for outgoing messages.

: NET-LISTEN

5 1 DO

I name DRX

LOOP

;

When one of these Datagram Receive functions has been honoured, the system will execute the NET-DISP

word. This will scan through the ncbs to discover which of them has been honoured. It will then display
the name of the sender (taking it from the CALLNAME �eld) and the associated message. Finally it re-posts
the Datagram Receive command.

: NET-DISP

5 1 DO \ Scan through the incoming NCBs

I NCB COMPLETE \ Has the command been honoured ?

IF

I NCB CR

CALLNAME 16 0 DO \ Display the CALLNAME filed

DUP C@ ?DUP 0= IF LEAVE THEN EMIT 1+

LOOP DROP

." : " \ Display a name separator

I BUFF I NCB LENGTH @ TYPE \ Display the message

I name DRX \ Re-post the DRX

THEN

LOOP

;

The output from NET-DISP will be displayed in a small window at the top of the screen. The following
line de�nes the window to start at the top left of the screen, being 78 characters wide and 5 lines high.
The WITH-BORDER indicates that the window will have a line boarder displayed around it. Finally the
window will be called NET-WIN.

1 1 78 5 WITH-BORDER CREATE-WINDOW NET-WIN

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 23

The last word to be de�ned in this section is NET-GO. This is the word that the CHAT-TASK will be asked to
perform (by the GO word). It initialises the window and posts the initial four Datagram Receive requests.
It then enters into an in�nite loop waiting for one (or more) of the requests to be honoured when it will
call the NET-DISP word to display the message and re-post the receive request.

: NET-GO

NET-WIN <WIN \ Open the window.

*WCLEAR \ Clear it

*TITLE" Net Chat " \ Give it a title

NET-LISTEN \ Post initial four DRX commands

BEGIN

STOP \ Wait for one to be honoured

NET-DISP \ Display the message & re-post

AGAIN

WIN>

;

The �nal act in this section is to indicate the completion of the code that is to be executed by the
CHAT-TASK actor. This also completes the de�nition of the actor. Any words de�ned from this point on
would not be accessible to the CHAT-TASK actor.

CHAT-TASK CONSTRUCT

2.9.3 Sending

In this section we de�ne the \Sending" part of the application. In reality this consists of one
de�nition. The word CHAT will ask the user to type in a one line message. It will then send the message
as a datagram to the group name \NET-CHAT", thus any node with a Datagram Receive posted on the
group name NET-CHAT will receive a copy of the message (including the sending node).

Firstly, the word locates the outgoing message bu�er (bu�er 0). It then erases the bu�er making
sure no other message is stored there. It now displays a message asking the user to input the message
they wish to transmit. The message is read directly into the bu�er with a maximum of 60 characters in
length:

78 Characters in the display line
� 16 Maximum characters in user name
� 2 Name/Message separator (\: ")

60 Total allowable size of message

The number of characters actually typed is taken as the size of the bu�er. The bu�er is sent
to the group name NET-CHAT via the outgoing ncb (ncb 0). Finally, the word waits for the Datagram
Transmit function to complete before returning to the user.

: CHAT

0 BUFF \ Find outgoing buffer

DUP 60 ERASE \ Erase buffer

CR ." Message: " \ Ask for the message

DUP 60 EXPECT \ Read in the message

SPAN @ " NET-CHAT" 0 NCB DTX \ Send the message

STOP \ Wait for NetBios to complete

;

2.9.4 Initialisation

In this part of the application, we provide the initilisation of the system. The word GO initialises
the system for use with the \Net-Chat" application as outlined in section 2.5.2.

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 24

The �rst part of the initialisation is to de�ne a word that is going to become the network error
handler for the application. This is a very simple word that simply ignores any errors. This de�nition
is required so that the INIT-CHAT word can examine the return code and take appropriate action. (The
default action will cause the system to abort on an error.)

: NO-ERROR DROP ;

The next part of the initialisation process is coded into the word INIT-CHAT. This initialises the network
handling side of the system. Firstly, it replaces the standard error handling with our error handling
system (NO-ERROR). It will then ask the user to type in a unique name that it will use to identify the user
to the other uses of the system. It attempts to add the name to the network (Add Name). If an error
occurs a message is displayed and the user is asked to supply an alternative name.

When the individual name has been established (on the outgoing ncb, ncb 0), the error handler
is reset back to the default. The NO-ERROR handler is only used to allow the word to extract the error
code and ask for another name if necessary.

The group name NET-CHAT is added to the network (on ncb 1). The information placed in the
ncb by the Add Group Name function is copied to the remaining incoming ncbs (2, 3 and 4).

: INIT-CHAT

'NETERROR @ \ Save the default error handler

['] NO-ERROR 'NETERROR ! \ Reset the error handler

BEGIN

CR ." Enter your name: " \ Ask for a name

0 BUFF DUP 1+ 16 EXPECT \ Read the name (max 16 chars)

SPAN @ SWAP C! \ Make buff a counted string

0 BUFF 0 NCB ADD-NAME \ Add name to Network

0 NCB NERROR

WHILE \ While error in Add-Name

CR ." Sorry, someone else is already using that name, try another."

REPEAT \ Repeat input sequence

'NETERROR ! \ Reset error handler to default

" NET-CHAT" 1 NCB ADD-GROUP \ Add the group name

1 NCB DUP DUP

2 NCB COPYNCB \ Copy the NCB data to NCB 2

3 NCB COPYNCB \ '' NCB 3

4 NCB COPYNCB \ '' NCB 4

;

The window for use by the OPERATOR actor is now de�ned to be 15 lines of 78 characters starting at line 8,
complete with a line boarder.

1 8 78 15 WITH-BORDER CREATE-WINDOW OP-WIN

Finally, the word GO is de�ned. This is the word that the user will type to initialise the \Net-Chat"
application.

The �rst action of GO is to call the INIT-CHAT word. Thus it asks for an individual name and
initialise the ncbs. GO will then clear the screen (CLEAR) and turn the hardware cursor o� (HWC-OFF)
ready for the windowing environment. It will then redirect the OPERATOR output to the OP-WIN window
(<WIN). Finally, the actor CHAT-TASK is sent the message (SEND") to initialise its window and listen for
and display incoming messages (NET-GO).

: GO

INIT-CHAT \ Initialise the Network

CLEAR \ Clear the screen

HWC-OFF \ Turn the hardware cursor off

Practical and Theoretical Aspects of Forth Software Development: Using IBM's NetBios 25

OP-WIN <WIN \ Redirect output to the OP-WIN window

*WCLEAR \ Clear the window

*TITLE" Operator " \ Title the window

CHAT-TASK SEND" NET-GO " \ Set the CHAT-TASK listening

;

2.9.5 Close Down

In this, the �nal section of the application, we provide the code that will close down the appli-
cation. All applications should provide a graceful close down, especially when they are using the services
of some kind of server such as the NetBios.

There are a number of things we need to do to close down: stop the CHAT-TASK actor; remove the
unique name from the system; cancel any outstanding commands; resign from the NET-CHAT group; tidy
up the screen. The order in which these events occur is quite important. All of this can be accomplished
in the one Forth word, CLOSE-CHAT. This is the word that the user will type when they wish to close or
leave \Net-Chat".

Our �rst task is to force the CHAT-TASK actor to stop processing. This we do by forcing it
to accept a new task (via the MUST SEND" operation). We ask CHAT-TASK to close its window (WIN>)
and then to stop processing until further notice (HALT). Having stopped CHAT-TASK from receiving any
messages, we are now able to alter the status of the network. We �rst remove the unique name from
the name table (REMOVE-NAME). This provides us with a free ncb which we use to cancel the Datagram
Receive requests that CHAT-TASK would have posted (NET-CANCEL). Notice how any task can cancel these
requests as the NetBios is unaware of our tasking mechanism, thus does not consider a NetBios request
to be owned by any particular task.

We are no longer able to send a message as we do not have a unique name. We are no longer
able to see messages as CHAT-TASK is not running. We are no longer listening for messages sent to the
NET-CHAT group as we have just cancelled all such requests. Thus we are now in a position to be able to
resign our membership of the NET-CHAT group (REMOVE-NAME). Finally, we close the operations window
(WIN>) and re-establish the cursor (HWC-ON).

: CLOSE-CHAT

CHAT-TASK MUST SEND" WIN> HALT" \ Close NET-WIN and stop the task

0 NCB REMOVE-NAME \ Remove the outgoing unique name

1 NCB 0 NCB NET-CANCEL \ Cancel the DRX commands

2 NCB 0 NCB NET-CANCEL

3 NCB 0 NCB NET-CANCEL

4 NCB 0 NCB NET-CANCEL

1 NCB REMOVE-NAME \ Remove the group name

WIN> \ Close OP-WIN

HWC-ON \ Turn hardware cursor on

;

If the user wanted to restart the application, he would simply type GO and he would be back in the
application.

26

Chapter 3

Mixed Languages interface

In this chapter we describe a mixed languages interface developed for use between the C and
Forth languages. The general ideas and principles used in developing this code are independent of the
Forth and C systems being used. This interface has been compiled under a number of di�erent systems
including Borland's \Turbo C", the ZorTech C and C++ compilers in addition to the Microsoft C
compiler.

3.1 Principles

The basic principle of the interface is that su�cient state information is stored when switching
between Forth and C operations for both languages to appear to be in full control of the system. The
system starts with the C main program which loads and executes the Forth system. Control will now
stay with the Forth system until such time that Forth passes control back to C. At this point, C sees
the Forth parameter stack as a simple data structure. The C code will pop an item o� the Forth
stack and use it as an index into a function table. The requested function is then executed and control
is returned to Forth.

3.2 Argument Passing

All of the argument passing between the two languages is performed by the C system manipulat-
ing the Forth parameter stack as a data structure. Several C functions have been de�ned to manipulate
the Forth stack. These include operations to drop an item, pop an item, push a value and a function
that allows us to index into the stack.

In order to make this system more usable, these functions have been de�ned as type independent
macros, thus they take a type indicator as an argument. To pop an integer o� the stack we would
write the statement \x = POP(int);" and to push a oating point value onto the stack the statement
\PUSH(float, n);" would be used.

3.3 Programming

In order to show the way in which you would program some code, let us look at an interface to
the memory allocation system (C heap management).

The code fragment in �gure 3.1 is placed in the users C �le. A reference to this function must
be placed into a jump table (�g 3.2).

In the Forth system, a word has been de�ned that calls the C code via a vector address. To
execute this function you would de�ne a Forth word such as GETMEM as shown in �gure 3.3.

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages interface 27

getmem()

{

void *ptr;

int size;

size = POP(int);

ptr = (void *)malloc(size);

PUSH(void *,ptr);

}

Figure 3.1: The C getmem function.

TBL jmptbl [] =

{

...

/* Function 8 */ getmem,

...

}

Figure 3.2: Example jump table.

This would be used as `1000 GETMEM'. The C code pops the value (1000) into an integer variable
(size). It will then return a pointer to the memory (ptr) allocated by the C system call.

In our implementation, we have de�ned two Forth words CCALL and -CCALL to handle C
function calls. Suppose that we wanted to de�ne words to access the function table as given in �gure 3.4,
we would write the code given in �gure 3.5.

The Forth words ARC and CIRCLE are de�ned to call the C code with the relevant function
number. However, the BAR function is used as a place holder. If at some time in the future we wish to
de�ne the BAR word, we would simply remove the - from the -CCALL that is holding BAR in place.

3.4 The C Heap

The C system assumes that it has full control of the system memory. Due to this assumption,
we must take care when deciding how to load the Forth system into memory.

The correct method is to request space for the Forth system from the C heap. Forth should
request memory only via a call to the C system. If the Forth system were to invoke the memory
management system calls directly, this may cause the C heap to become invalid.

This is particularly relevant with regard to Ms-Dos where some of the C systems we have used
attempt to expand their heap by resizeing the memory space allocated to it rather than by requesting a
fresh memory area. If an area of memory allocated to Forth prevents this operation, the C system will

: GETMEM 8 CCALL ;

Figure 3.3: The GETMEM word.

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages interface 28

TBL jmptbl [] =

{

/* Function 1 */ draw_arc,

/* Function 2 */ draw_bar,

/* Function 3 */ draw_circle

}

Figure 3.4: Another example jump table

CCALL ARC

-CCALL BAR

CCALL CIRCLE

Figure 3.5: Example of using CCALL and -CCALL to de�ne words

incorrectly assume that it has run out of available memory.

3.5 Organisation

Our system has been split into three modules. The �rst of these is the main C module that
holds the C main() function. A second module was written to hold non-portable code (this loads the
Forth system and handles the transfer of control between the two systems). Neither of these modules
should be changed by the user. We have placed them into a C library �le to be linked in with the third
module supplied by the user.

This third module holds all of the users C code and the function jump table. The user compiles
this module and links it with the required libraries (including ours) to produce a new C base program.

The source of this interface is far too large to be included here. The full, documented, sources
to the interface (including various development macros or scripts), along with a number of technical
comments about the system is given, in Appendix C.

3.6 Generalisation

We have made our implementation as general as possible. However, the two routines to load
and initialise the Forth system and to transfer control between the two systems have to be speci�c to
the systems being used.

In our implementation, it is assumed that all memory references are in long (or far) form. Thus,
it is necessary that all the modules be compiled using the large memory model. This is a restriction
imposed on use by using a segmented memory structure.

All of the �les have been written using standard coding. The Forth code is a very simple
change to the compiled system. The C code has been written to the Ansi standard while the assembler
code is written using the standard Microsoft assembler.

29

Chapter 4

Formal FORTH

In this chapter, we present a system that will aid in ascertaining
whether a program meets its speci�cation. By providing a formal base for the Forth language, we
can formally discover the coherence between the speci�cation and its implementation, thus we have the
ability to prove that the program meets its speci�cation.

4.1 Introduction

The conventional computer science approach to programming
languages starts by separating syntax from semantics.

The syntax deals with allowable statements or sentence formation and has been investigated
using techniques that apply equally well to simpli�ed forms of natural language. These techniques result
in a classi�cation of languages into categories such as phrase structured, context sensitive and context
free. A powerful body of theory (and application) has built up around the syntax of a language.

The semantics of a language deals with the meaning of program text; the interpretation that is
placed on a syntactically correct phrase in a given language.

Most language de�nitions have a formal description of the grammar that describes syntactically
correct statements for the given language, however, the syntax of a Forth system is semantically de�ned.
You could say that Forth is not a computer language, rather a dictionary of words where each word has
a de�nition which describes the operation it performs in terms of existing de�nitions or in terms of the
native code of the machine on which the system is implemented.

The set of words thus de�ned perform all operations executed by the system including the
scanning of Forth text to be compiled or interpreted. A word may be de�ned to ignore or amend
following words in the input stream. It is these abilities that make it di�cult to apply classical syntax
theory to Forth.

Many compiler developers use a virtual machine similar to the Forth abstract machine as a
universal intermediate code (Cook and Lee 1980; Miller 1987). Thus, one could say that the Forth
abstract machine is the ideal computer model (Kavipurapu and Cragon 1980).

4.2 The Forth Toolbox

In order to talk formally about a program, we must have a formally described programming
language/environment. Forth provides us with a simple language with a programming environment and
debugger. Due to the simple nature of Forth, this can be formalised much more readily than most other
languages (Stoddart 1988). The formal description of the Forth programming environment will provide
us with an additional toolbox to use when formally describing an application program.

Practical and Theoretical Aspects of Forth Software Development: Formal Forth 30

4.3 The Basic Model

Let us assume that we have a set of all of the known memory locations in a system and that we
have a set of all the possible (allowable) names for a Forth system:

[ADDRS ; NAMES]

It is possible to say that the Forth dictionary is a relation between names and addresses.
However, de�ning a simple relation does not capture the ordered (historical) nature of the dictionary so
we make this a sequential relationship:

dict : seq (NAMES � ADDRS)

An example entry of this type would be (6; (\@"; 204)) where the Forth word \@" is the 6th

entry in the dictionary and has an address of 204, quite how this is implemented is unimportant. In a
token based system, the 6 could be thought of as being the token for the word while a threaded code
system may not store the 6 at all but uses the associated address. For our purposes we will use the notion
of a token:

token : N

4.4 Word De�nitions

We now have the sequence dict that tells us what words are in the dictionary and where they
can be found. We have yet to record the de�nition of a given word, to do this we introduce a function
that relates known words to their de�nitions:

body : token ! seqNAME

where token is the index number of the word in the dictionary and seqNAME is the sequence of words
that make up the de�nition. Hence, a word such as NIP may have a dictionary entry of1:

f33; (\NIP"; 378)g

and a de�nition of:
f33 7! hSWAP; DROPig

4.5 Immediate Words

We must be able to discover if a word is immediate or not. Hence, we introduce a function
taking the token of a word and returning a true if the word is immediate or a false if not:

immediate : token ! ftrue; falseg

4.6 Storage Units

Forth does not use types in the conventional manner. Instead of types it uses classes of storage
unit. There are three classes of storage unit: Character, Cell and Double Cell.

Each class of storage unit is able to store any number of types that the application program
requires. The only limitations being hardware restrictions. The application programmer may add to the
list of possible types that a given storage class can hold, indeed he can even add new storage classes.

1Note that the addresses and token values given in this chapter are for example only and do not relate to any given
system.

Practical and Theoretical Aspects of Forth Software Development: Formal Forth 31

Words are de�ned with reference to the unit class rather than the exact type required. If we
were to enforce the use of types in our model we would not be modelling the full behaviour of a Forth
system. Hence this system uses the notion of classes of storage unit.

We must introduce the classes of storage unit as given sets of types:

[Char ; Cell ; DoubleCell]

4.7 Stacks

We must provide a mechanism for the parameter and return stacks. This we do by de�ning two
global variables consisting of a sequence of stack cells:

pstack ; rstack : seqCell

Thus we could de�ne the Forth word DEPTH as:

DEPTH b= [pstack 0 = h#pstacki a pstack]

Ie, we push onto the stack (add to the start of the sequence) the size of the stack (sequence) as it was at
the start of the statement. It should be noted that pstack 0 is the standard way of indicating the state of
the parameter stack after the operation while pstack refers to the state of the parameter stack prior to
the operation.

A possible de�nition for DROP would be:

DROP b= [pstack 0 = tail pstack]

Ie, the stack (sequence) now holds all that was previously on the stack (in the sequence) except for the
top most (�rst) element.

Our system will also have to cater for words with variable stack e�ects such as the ?DUP word.
We can represent this by placing a side condition on the stack description. Ie, ?DUP is de�ned as:

?DUP b=
2
664

�
(pstack 0 = pstack) ^ (pstack(1) = 0)

�
_�

(pstack 0 = hpstack(1)i a pstack) ^ (pstack(1) 6= 0)
�
3
775

So far we have only discussed words that e�ect the parameter stack (pstack). However, the
system is su�ciently exible, we can de�ne words such as >R which not only e�ect the parameter stack
but also the return stack (rstack). The de�nition of >R would be:

>R b= �
pstack 0 = tail pstack ^

rstack 0 = hpstack(1)i a rstack

�

while the de�nition for R> would be:

R> b= �
pstack 0 = hrstack(1)i a pstack ^

rstack 0 = tail rstack

�

4.8 Code De�nitions

There are many words that are coded in the native machine language of the host computer,
SWAP and DROP are two such words. In order to cater for such words, we introduce a set of code level
words. As these words are de�ned in the native machine language, we can not give their de�nitions,
however, we can give a formal description of the function that they perform.

Assuming that the words SWAP and DROP have the following dictionary entries:

Practical and Theoretical Aspects of Forth Software Development: Formal Forth 32

(3; (\SWAP"; 30)) and (4; (\DROP"; 36))

then we could represent there actions as:n
3 7! [pstack 0 = hpstack(2); pstack(1)i a tail tail pstack]

o
and�

4 7! [pstack 0 = tail pstack]
	

So we now have a function that relates known \code-level" words to their required action:

code : token ! axiom

Thus giving us an additional set of axioms to work with when reasoning about the implementation. Thus
the dictionary is split into \high-level" (body) or \code" (code) words.

dom body \ domcode = ?

It should be noted that we have not provided an instruction pointer. To do so would be to
restrict the number of possible implementation techniques. Although the Forth abstract machine calls
for an instruction pointer, we leave it up to the implementor to introduce and de�ne their own.

A consequence of this is that operations such as NEXT, EXIT and the run-time action of : and ;

are currently not speci�able. They must be provided by the implementor, thus allowing them to model
their particular method of implementation.

4.9 Wordlists

We de�ne a set of wordlists so that the dictionary is composed of several wordlists, where the
wordlists include all the entries in the dictionary. Yet no single entry occurs in more than one wordlist,
ie, the dictionary is partitioned into wordlists:

wordlist partitiondict

At any point in time, the dictionary has a search order associated with it. The search order is
simply a sequence of wordlists that are to be searched:

search order : seqwordlist

There is also the compilation wordlist:

compilation wl : wordlist

4.10 De�ning words

When a new word is created, the system state is updated in three ways:

1. Its name is appended to the current compilation wordlist and thereby to the dictionary.

2. Its de�nition is appended to the body or code relations dependent on the type of word being de�ned.

3. The immediate relation is updated to indicate if the word is immediate or not.

Let us look at a few examples to see how this works.

Practical and Theoretical Aspects of Forth Software Development: Formal Forth 33

4.10.1 High-Level words

We could de�ne the word +! as:

: +! (n addr --) DUP @ ROT + SWAP ! ;

This would add the name +! to the currently de�ned compilation wordlist:

compilation wl 0 = compilation wl [f(244; (\+!"; 8270))g

We now add the word's de�nition to the system. As it is a \high-level" de�nition we do this by adding
an entry to the body relation:

body 0 = body [f224 7! hDUP; @; ROT; +; SWAP; !ig

Finally, we extend the immediate function so as to return a false value for this word:

immediate 0 = immediate [f244 7! falseg

4.10.2 Immediate words

The de�nition for the word IF could be:

: IF COMPILE ?BRANCH >MARK ; IMMEDIATE

This would add the name IF to the current compilation wordlist:

compilation wl 0 = compilation wl [f(300; (\IF"; 10030))g

The de�nition of the word is also added to the body relation:

body 0 = body [f300 7! hCOMPILE; ?BRANCH; >MARKig

While the IMMEDIATE places a true mapping into the immediate function:

immediate 0 = immediate [f300 7! trueg

4.10.3 Code words

When a \code" level word, such as ROT, is de�ned, we add its name to the current compilation
wordlist:

compilation wl 0 = compilation wl [f(5; (\ROT"; 40))g

We must now assume that its de�nition is correct and simply add the description of its function to the
set of axiomatic de�nitions:

code0 = code [
n

5 7! [hpstack(3); pstack(1); pstack(2)i a tail tail tail pstack]
o

Finally, the immediate function is updated in the same manner as for \high-level" de�nitions. It is
assumed that the word is not immediate unless the IMMEDIATE word is placed after its de�nition.

immediate0 = immediate [f5 7! falseg

Practical and Theoretical Aspects of Forth Software Development: Formal Forth 34

4.11 Dictionary Searching

In order to model the dictionary search, we de�ne a boolean function that returns a true if a
given word is in a given wordlist, otherwise it returns a false:

inwordlist1(n;wl) = n 2 dom(ran(wl))

A true result is obtained if n belongs to the set dom(ran(wl)). Let us clarify this by means of an example:

Assume wl = f(3; (\SWAP"; 30)) ; (4; (\DROP"; 36)) ; (5; (\ROT"; 40))g
then ranwl = f(\SWAP"; 30) ; (\DROP"; 36) ; (\ROT"; 40)g
) domranwl = f\SWAP"; \DROP"; \ROT"g

We can now de�ne a function to �nd a given name within a given wordlist:

�nd1(n;wl) = if n = �rst(second(wl))
then second(second(wl))
else �nd1(n; front wl)

This recursive de�nition says that if the name being searched for (n) in wordlist (wl) is the
last name in the wordlist (�rst(second(wl))) then return its associated address (second(second(wl))).
Otherwise, it repeats the operation on a new wordlist being the front of the current wordlist. Note that
the de�nition for �nd1 does not indicate what will happen if the name is not in the wordlist.

We now introduce a boolean variable to indicate if the word has been found or not:

wordfound : ftrue; falseg

We can now complete our model of the dictionary search operation by de�ning a function that
takes a name and a search order as arguments, returning an address:

�nd(n; so) = if so 6= ?
then if inwordlist1(n; head so)

then �nd1(n; head so)
wordfound 0 = true

else �nd(n; tail so)
else wordfound 0 = false

0

This function works by checking that the required word (n) can be found in the �rst wordlist
of the search order (so). If it can, we use the function �nd1 to �nd it and set the variable wordfound to
true otherwise we start again using the �rst wordlist from the remaining wordlists in the search order.
Note that if the search order becomes empty, then we have searched through all of the given wordlists
without �nding the word. Hence, we simply set the variable wordfound to false. Thus, we can use the
value of wordfound to indicate that the word has been found in one of the given wordlists.

35

Chapter 5

Stack Optimisation

In the previous chapter we saw how representing the Forth stack as a sequence of untyped
elements can be useful when formally de�ning the operations of a Forth system, compiler or application.

This concept has lead us on to viewing the stack as a simple sequence of (untyped) elements. In
turn, this has lead to the development of a compiler optimisation technique that uses these ideas. In this
chapter, we review the traditional methods of optimisation used in native code Forth implementations.
We then go on to describe our new technique and how it can be applied to a micro-processor with a large
register �le, such as the Motorola 68000 or a RISC processor.

5.1 Introduction

Over the years, Forth compilers have been implemented in a number of di�erent ways. These
include:

Threaded Code: In this type of system the compiler will simply generate a list of addresses for a
de�nition. An \Inner Interpreter" is used to pass through the words de�nition. The �rst cell of the
de�nition is the address of some assembler code that is able to interpret the rest of the de�nition.
Every Forth word in the dictionary is de�ned in this manner including assembler level words.

This is probably the most commonly used method of implementation. It is the implementation
method promoted by the early standards (Forth Interest Group 1980; Forth Interest Group 1983).
It leads to a system that tend to be small in size (as most of the de�nitions are lists of addresses)
and have a very fast compile time. The method does lead to relatively slow execution timings. It is
fairly simple to develop interactive debuggers and structured de-compilers (Buege 1984; Sjolander
1987; Bradley 1985) for such systems.

This method is known as \Indirect threaded code". A slight variation on this system (known as
\Direct threaded code") is also widely used. In this variant, each word is assumed to be an assembler
de�nition, thus when a word is invoked, the system makes a machine level call to the word. Such
a system will compile a call to the inner interpreter as the �rst operation of a high-level de�nition.
This method is well suited for systems that are capable of easily supporting two (or more) stacks.

The \Direct" system has a level of indirection removed, thus it tends to be slightly faster than
\Indirect" systems. Applications consisting mainly of low level (assembler) de�nitions tend to show
an execution speed increase due to the inner interpreter being invoked only when required. The
size of the �nal code is dependent on the system and the complexity of the application. On a Z80
based system the code will be slightly larger than that produced with a Indirect system, whilst on
a RISC based system there will be no size di�erence. If the application consists mainly of low level
de�nitions the code may be smaller.

Practical and Theoretical Aspects of Forth Software Development: Stack Optimisation 36

In general, it is considered that the slow execution speed disadvantage is overshadowed by the size
and de-compiler advantages. The portability of high level de�nitions is also considered a major
advantage of this method.

Subroutines: In some systems, a high level de�nition consists of a sequence of subroutine calls to the
relevant words. Every word is assumed to be a machine code de�nition. This kind of system is
referred to as using the \Threaded Subroutine" method as it is close to the Direct Threaded Code
method using subroutines rather than an inner interpreter.

The main advantage in using this method is that it does away with the need for an inner interpreter.
A result of this is a speed increase over Direct Threaded systems, although compilation speed may
be slightly reduced (Dowling 1981).

The size of the code is dependent on the system and complexity of the application. On a 68000
system although we gain a speed advantage, the code produced is normally larger than Direct
Threaded Code. On a RISC system there is not only a speed advantage but also a small saving in
code size as we don't need to invoke an inner interpreter to interpret high level de�nitions.

This kind of coding is only useful on systems that can support two or more stacks. On systems that
only support one (processor) stack, it is necessary to synthesize one of Forth's stacks. It is normal
to synthesize the \return" stack leaving the built in (faster) stack for the \parameter" passing.

It is a fairly simple step to make some of the low level kernel words macros, such that, rather than
compiling a subroutine call, it compiles the instructions needed to perform the function directly.
This is referred to as \inline code".

Typically, the code compiled into the de�nition consists of simple stack manipulations and some
ow control operations. The code that is compiled \inline" in this way is normally �xed by the
compiler designer. A number of people have looked at automating this process (Pawley 1984; Rose
1986; Almy 1987). In this chapter, we look into these methods and show how treating the stack
formally (as a sequence of items) can lead to an advanced optimisation technique.

In such a system, we would expect to �nd a dramatic speed increase although a slight compilation
speed decrease is also possible. We would also expect to see less use of the return stack. The
compiler designer will have to make the choice of possible smaller slower code or slightly larger
and faster code. Although the �nal code may be faster, it may also be larger, dependent on the
compiler.

Hardware: A number of attempts have been made to produce micro-processors that are capable of
executing a Forth-like machine language. Chips such as the Novix{4016 (Golden, Moore, and
Brodie 1985; Jennings 1985; Miller 1987), Harris RTX{2000 (Danile and Malinowski 1987; Jones,
Malinowski, and Zepp 1987; Harris Semiconductor 1988c) and the MuP20 (Moore 1990a) have been
designed along these lines. The binary instruction set of these processors is a basic implementation
of the low level kernel required to execute a Forth program. A compiler will generate native code
to execute on one of these chips. As this code is close to the Forth system, such compilers produce
fast and small code.

A number of more advanced designs are currently under development including designs by Chuck
Moore (Computer Cowboys), Marty Fraeman (Johns Hopkins University/Applied Physics Labo-
ratory), Pedro Luis Prospero Sanchez (Cidade University in Sao Paulo) and Sergei Barano� (St.
Petersburg Institute for Informatics and Automation).

The majority of Forth system use \threaded code" techniques, thus the compilers are quick
and simple. The alternative \native code" techniques tend to use more space but o�er more opportunity
for optimisation. The rest of this chapter looks at some of these optimisation techniques and introduces
a new one based on a formal view of the parameter stack.

Practical and Theoretical Aspects of Forth Software Development: Stack Optimisation 37

It is worth noting that the nature of the language makes many of the traditional optimisation
techniques (such as common subexpression, copy propagation, loop optimisation and code motion) irrel-
evant. There are, however, a couple of the traditional techniques (such as dead-code elimination and ow
graphs) that can be used (Aho, Sethi, and Ullman 1986; Bruno and Lassagne 1975).

5.2 Code Generation

In a Forth system that generates native code instead of threaded code, the operation of a word
could simply be described by a sequence of subroutine calls to the relevant operations. This has been
termed \subroutine threaded code". For example, a de�nition of the standard word +! could be:

: +! (n1 addr -- ; Add n to contents of addr)

DUP (n1 addr addr)

@ (n1 addr n2)

ROT (addr n2 n1)

+ (addr n1+n2)

SWAP (n2+n1 addr)

! ()

;

This would produce a operation body of:

JSR DUP Dup

JSR _Fetch @

JSR ROT Rot

JSR _Add +

JSR SWAP Swap

JSR _Store !

RTS ; (Return to caller)

5.3 Inline Compilation

The code generated by this de�nition is just as simple to produce as in the threaded code
technique. However, we now incur an overhead in using the subroutine (JSR) instruction. This places
an inherent slowness into the system, a subroutine call has to place its return address on the stack,
execute the target code and return to its calling location. On the 68000, the threaded code method is
more complex and slightly slower (Almy 1987) whilst a RISC is additionally required to clear out its
instruction pipeline. Anthony Rose (1986) has proposed a system of \inline compilation" that reduces
this overhead.

The basic principal behind Rose's idea is that each word is to be compiled so that it can be
used as a subroutine call (as with subroutine threaded systems). The length of the code (excluding the
subroutine return (RTS) instruction) will be stored in the word's header. When a reference to the word
is to be compiled, the compiler will compare the length of the word's body to a compilation variable
(CSIZE). If the word is smaller in length to the given size then the code will be copied directly into the
new de�nition. If, however, the code is over the limit set by CSIZE, a subroutine call to the code will be
compiled into the new de�nition. By having a reasonable value for the \inline" limit (Rose suggest 13 for
a 68000 based system), the overhead of making a subroutine call can be removed as the code is compiled
directly into the de�nition. Note, this does not eliminate the subroutine calls to pre-compiled code, it
simply reduces the frequency of them.

Rose also noted a requirement for two additional compilation ags, subroutine (SUBR) and inline
(INLINE) to be used in the same manner as IMMEDIATE. If the INLINE ag is set, the word is compiled
directly into the code ignoring the value of CSIZE. Conversely, if the SUBR ag is set, a subroutine call to
the code will always be compiled.

Practical and Theoretical Aspects of Forth Software Development: Stack Optimisation 38

5.4 Peep-Hole Optimisation

Using inline compilation, the word +! would now have a operation body of (in standard 68000
assembler notation):

MOVE.L (A6),-(A6) Dup

MOVEA.L (A6),A0 @

MOVE.L (A0),(A6)

JSR ROT Rot

MOVE.L (A6)+,D0 +

ADD.L D0,(A6)

MOVE.L (A6)+,D0 Swap

MOVE.L (A6),D1

MOVE.L D0,(A6)

MOVE.L D1,-(A6)

MOVEA.L (A6)+,A0 !

MOVE.L (A6)+,(A0)

RTS ;

Notice the additional time incurred by the passing of arguments on the stack which is then used
by the next word in the de�nition. The DUP is used so that the @ will not destroy the address on the stack.
This is an additional overhead caused by using this inline compilation. However, if the word @ were to
be IMMEDIATE, it can scan back through the code just compiled. This means that it can recognise that a
DUP was compiled just prior to it. Having done this it can now overwrite the code for DUP with some code
that would perform the fetch without removing the address from the stack (or compile an implied DUP@).
Given that all the basic1 words perform this kind of scanning back to the previous word compiled, the
body for +! would now be:

* Dup

MOVEA.L (A6),A0 @

MOVE.L (A0),-(A6)

JSR ROT Rot

MOVE.L (A6)+,D0 +

ADD.L D0,(A6)

* Swap

MOVEA.L 4(A6),A0 !

MOVE.L (A6)+,(A0)

ADDQ #8,A6

RTS ;

The ! word has replaced the code generated by SWAP. Notice how ! has used the instruction
ADDQ #8,A6 to move the parameter stack back to its expected location.

Here a saving is made by each word scanning back to the previous word compiled. It is common
for a word to be able to scan back up to four previously compiled words. If the word can scan back
further (to the beginning of the de�nition), a greater saving can be achieved. The body for this could
then be:

1There is an ongoing argument in the Forth community as to what precisely constitutes this basic set of words.

Practical and Theoretical Aspects of Forth Software Development: Stack Optimisation 39

MOVEA.L (A6)+,A0 Dup @

MOVE.L (A6)+,D0 Rot

ADD.L D0,(A0) + Swap !

RTS ;

This form of backwards scanning of the compiled code (known as \peep-hole optimisation"
(Tanenbaum, van Staveren, and Stevenson 1982)) can give rise to some rather more optimal coding that
would not otherwise be available. Any function that relies on information from the stack can be optimised
in this way.

5.4.1 Conditionals

Another place for excessive optimisation is the conditional words (such as IF). Including all of
the words that leave a boolean ag on the stack (such as =). Currently, the word IF simply interrogates
the boolean ag on the top of the stack to make a conditional jump. If it were to scan backwards then the
boolean ag would not be required as it could be integrated into the jump instruction at the condition
test. For example, let us take the code \0 > IF", this would normally be compiled as:

MOVE.L #0,-(A6) 0

MOVE.L (A6)+,D0 >

MOVE.L (A6),D1

CLR.L D2 0 (false)

CMP D1,D0

BLE f0

SUBQ #1,D2 -1 (true)

0: MOVE.L D2,(A6)

MOVE.L (A6)+,D0 IF

BEQ <n>

Where <n> is the conditional o�set. It is initially set to 0 while its correct value is calculated by the word
`THEN'.

With the > and IF words producing optimal code, this could now be compiled as:

CLR.L D0 0

MOVE.L (A6)+,D1 >

CMP D1,D0

BLE <n>

Here the > word replaced the code to place a literal 0 on the stack as it is not required. The
IF word replaces the processing (and production) of the boolean ag by placing its o�set in the code
produced by > (the BLE instruction), thus removing the need to pass the boolean ag from the one word
to the next.

If multiple conditions are being tested (ie a logical OR or AND is being used), it would be possible
to use lazy evaluation (Minker and Minker 1980; Hanson 1980) to reduce the time taken to evaluate the
logical expression prior to the IF.

5.5 Registers

Some implementors have extended this thinking so that they place the top of the stack in a
speci�c (static) register (Bradley and Saari 1988). Others have tried placing the top three items in
registers. The second one being in an Address register rather than an Data register (comp.lang.forth
1992).

Practical and Theoretical Aspects of Forth Software Development: Stack Optimisation 40

This form of optimisation can be used with all of the implementation methods. However, it is
felt that the use of static registers to hold elements of the stack is cumbersome. The speed advantage
is outweighed by the complexity of the system. Indeed this is often quoted as being the most frequent
source of error in such systems (comp.lang.forth 1992).

5.6 Optimisation using a Stack image

In the rest of this chapter we present a new technique which allows the top items of the stack to
be stored in internal registers. The registers used to store the items (S0, S1 and S2) are to be allocated
dynamically . In order to do this, the compiler will have to maintain a record of which register holds which
stack element. This record is in the form of an image. To show this \stack image" we use a notation that
relates a register to its stack element, thus the sequence:

< D0;D1;D2 >

indicates that the top item of the stack (S0) is stored in the register D0 with the second stack element
(S1) in D1 and the third (S2) in D2. Any stack item not given in the sequence is assumed to be on the
physical stack of the micro-processor. Hence, the notation < D2;D0 > signi�es that S0 is in register D2,
S1 is in D0 and that S2 is not being held in an internal register but is on the micro-processors `physical'
stack.

Underow of the parameter stack may still occur, however it is possible to include some form of
checking into the compiler to check for this (Ho�mann 1991). By having a formal list of arguments into
and out-of a word, the compiler will be able to �nd out if underow will result from the expected usage.

To show how our system works, let us look at the standard word SWAP. If the top two elements
of the stack are stored in registers, SWAP need only change the compilation stack image to achieve its
run-time e�ect. However, if one or both of the elements are on the parameter stack then they will have
to be brought into internal registers. We now have to update the stack image. In doing so it can also
swap the items around.

Table 5.1 shows the possible compilation actions that can be taken by the word SWAP dependent
on the current state of the stack image2.

Code Generated: Stack Image
none Before: < D0; D1 >

After: < D1; D0 >
MOVE.L (A6)+,D1 Before: < D0 >

After: < D1; D0 >

MOVE.L (A6)+,D1 Before: <>
MOVE.L (A6)+,D0 After: < D0; D1 >

Table 5.1: Example SWAP actions

5.6.1 Argument Passing

Sometimes it will be necessary to invoke these (compiling) words as a subroutine (Ie when
invoked from the keyboard interpreter). In such cases we do not know the state of the stack. To counter
this, we say that the stack image must always be

< D0; D1; D2>

2By this we mean the current values in the stack image.

Practical and Theoretical Aspects of Forth Software Development: Stack Optimisation 41

on entry to and exit from the subroutine. Thus it is now the responsibility of the subroutine to make
sure that the stack image is in the same form on exit of the routine.

Let us take the SWAP word. This now has two di�erent actions to take depending on whether
it was invoked as a subroutine or from the compiler. If the word is invoked from the compiler, it must
compile the relevant code into the dictionary (as shown in table 5.1). Otherwise it will have to perform
as a subroutine, the following code de�nes the action of the word when invoked as a subroutine:

_SWAP: EXG D1,D0

RTS

This subroutine knows what the stack image is supposed to be on entry and exit of the code.
By simply exchanging the contents of the top two registers, it has performed its function without having
to alter the stack image.

The de�nition of the compiler word SWAP would have to be intelligent enough to discover whether
it was invoked from the compiler or interpreter taking the required action. The following is a possible
de�nition of the SWAP word3:

HEX

: SWAP (n1 n2 -- n2 n1 ; Swap over the top two stack elements)

?COMP IF

(In compilation mode - Take relevant action)

SLEN @ CASE

0 OF (All argument on physical stack)

IN-LINE A6)+ D0 .L MOVE

A6)+ D1 .L MOVE END-CODE

, , (Place Op-Code into Definition)

2 SLEN ! (Update Stack Len)

0 >S0 1 >S1 (Set up Stack Image)

ENDOF

1 OF (Second argument on physical stack)

S0> 1+ 3 MOD DUP (Find next register)

IN-LINE A6)+ D0 .L MOVE END-CODE

200 * OR (Replace D0 with correct reg.)

, (Compile into the definition)

2 SLEN ! (Update Stack Length)

S0> >S1 >S0 (Update stack image)

ENDOF

(Both in internal registers)

S0> S1> (Read old stack image)

>S0 >S1 (Set new stack image)

ENDCASE

ELSE

(Called form Keyboard Interpreter)

_SWAP

THEN

; IMMEDIATE

Here we can see the de�nition of the kernel words, such as SWAP, are far more complex than the
simple CODE de�nitions that we are used to in the more traditional compilers. However, only the basic
(kernel) operations will need such a complex de�nition.

3The method of implementing the interrogation of the current interpreting/compiling state was chosen to show the
concept, other methods may be better for full implementations.

Practical and Theoretical Aspects of Forth Software Development: Stack Optimisation 42

In this de�nition, we have used many non-standard words. These have been used to make the
de�nitions more readable. The function ?COMP is used to detect whether the Forth system is in interpret
or compilation mode. The version of the word used here is di�erent from its conventional usage in that
it returns a ag rather than producing an error message. The words S0>, S1> and S2> read the value of
the register holding the stack elements S0, S1 and S2 respectively. In contrast, the words >S0, >S1 and
>S2 place a register number in the stack image for the relevant element. The variable SLEN is used to
hold the current size of the stack image. The action taken by the word at compile time is dependent of
the size of the stack image.

Finally, we have introduced the new concept in the word IN-LINE. It is used to enter the
assembler such that the machine instructions are compiled into the de�nition as literal values and not
as executable code. This is the same as working out the op-codes by hand and coding them into the
de�nition as literal values. However, IN-LINE uses the built in assembler to compute the op-codes for us,
it also makes the source code a lot more readable.

Now let us apply this idea to our de�nition of +!. The body of the word (after compilation with
such words) could now be:

* < D0; D1; D2>
MOVE.L D2,-(A6) Dup
MOVE.L D0,D2 < D2; D0; D1>
MOVEA.L D2,A0 @
MOVE.L (A0),D2 < D2; D0; D1>

* Rot < D1; D2; D0>
ADD.L D1,D2 + < D2; D0 >

* Swap < D0; D2 >
MOVEA.L D0,A0 !
MOVE.L D2,(A0) <>
MOVE.L (A6)+,D0 ;
MOVE.L (A6)+,D1

MOVE.L (A6)+,D2

RTS < D0; D1; D2>

Notice how the ; word has compiled three MOVE.L (A6)+,Dn instructions. This is in order to regenerate
the correct stack image for exit from the subroutine. This is the \worst case" situation as all three
registers have to be popped o� the physical stack into registers.

5.6.2 Conditional execution

When a branch is made in the code (an IF instruction), the state of the stack image could di�er
between compile and run time. If the compiler did not take account of this it would compile code to work
with one stack image when in fact another stack image is being used. To overcome this, we save a copy
of the stack image at the start of the conditional (after the IF). At the end of the conditional (the word
THEN), we will have to force the stack image to be the same as when the condition started (the saved
image). In this way, we can say that the stack image will be the same if we skip over the conditional or if
we execute it. Notice that the extra code to realign the stack is included with the condition. An example
of this is shown in �gure 5.1.

For an IF: : :ELSE: : :THEN construct, we can extend this idea such that the ELSE word will swap
the current stack image with the saved one. This means that both parts of the conditional code start
with the same stack image and that the false part is required to realign its stack to be the same as that
at the end of the true part. Figure 5.2 shows an example of this method.

Practical and Theoretical Aspects of Forth Software Development: Stack Optimisation 43

IF � Save stack image
true part

THEN � Realign stack image

Figure 5.1: Handling a conditional

IF � Save stack image
true part

ELSE � Swap current/saved stack images
false part

THEN � Realign stack image

Figure 5.2: Handling multiple conditions

5.6.3 Looping structures

It is possible to handle loop structures in the same way as conditional structures. We save
the stack image at the start of the iteration and realign it at the end. Figure 5.3 shows how we would
implement this idea on a BEGIN: : :WHILE: : :REPEAT structure.

BEGIN � Save stack image
condition test

WHILE � Save stack image
loop code

REPEAT � Realign to BEGIN image
 � Recover WHILE stack image

Figure 5.3: Handling loops

This �gure shows a peculiar problem with the looping system. When we compile the BEGIN

word we do not know what kind of loop structure we are compiling. Thus, we save the current stack
image in anticipation of it being used. All of the control structures that start with the word BEGIN will
realign to this value at some point. The WHILE loop is a special case as we are required to remember the
stack image twice, at the `BEGIN' and at the `WHILE'. The `REPEAT' command will realign the stack to the
BEGIN stack image. On completion of the loop, the WHILE stack image will be in force, thus REPEAT will
also have to reset the compilation stack image back to the WHILE version.

44

Chapter 6

The Cell Type

It is generally considered that the lack of typing in Forth is useful. This can be seen by the
de�nition of the stack to hold values of type \cell". The de�nition of the type cell is su�ciently vague to
allow any data type. However, this can also be misleading and confusing. Here we present a theory that
allows us not only to type the arguments of a function, but additionally to check that the arguments are
correct for any given function.

6.1 Introduction

The Ans Asc X3/X3J14 Technical Committee de�nes a cell as:

The primary unit of information in the architecture of a Forth system. Data stack elements, return
stack elements, addresses, and single-cell numbers are one cell wide. Cell size is implementation-
de�ned, speci�ed in integer address units and the corresponding number of bits. The size of a cell is
an integral multiple of the size of a character.

Let us look at the following Forth code:

X @ EXECUTE

where the variable X is holding an integer. The word @ will fetch a value of storage class cell and place it
on the stack. The word EXECUTE will then take the cell storage class and execute the related de�nition.

There are two types used in this example, \integer" and \execution-token". Both types belong
to the storage unit class cell . In this example, we have the word EXECUTE expecting a value of type
execution-token when there is a value of type integer on the stack. This is obviously a type clash. Due
to the de�nition of a cell, we have no choice but to let this error stand. This is not a new problem, it has
existed from the �rst implementations of Forth.

6.2 Stack Types

One way to solve this problem is to implement some form of typing mechanism. Implementing
a run time type checking mechanism would be too cumbersome to be of use. It would also restrict the
programmer from performing certain \tricks" that require a change of type part way though a de�nition.

In this chapter, we propose a system that can be used to check the type requirements of a
sequence of words at compile time. This has the advantage of not being operational at run time. It also
has the advantage of not restricting the programmer from changing the type of a stack argument mid
word.

Practical and Theoretical Aspects of Forth Software Development: The Cell Type 45

This system can be used to check that any given program meets its stack requirements. This
is not the same as saying that the program is complete or correct in operation. That is to say that
a program does not invalidate the stack, but may be logically incorrect. This is the same as a Pascal
program compiling, but not executing correctly. Such a program is known as having a \logic error" as
opposed to a \syntax error" or a \type mismatch".

6.3 Notation

In order to discuss these ideas in a clear manner, we use the notations of set theory and new
notations that we have developed for this system.

We give each word a \type signature" in the way that we currently give each word a signature
(in comments). In order to make things look similar to the current practise, we use the notation (s1
--- s2) to indicate a words type signature. In this example, the word is expecting a type sequence s1
on entry and will leave the type sequence s2 on exit from the word.

It would be possible to de�ne a word with a type signature of (a; b; c --- a; a) to indicate
that the word will take three arguments of type a, b and c returning two values of type a on the stack.
Using this system, it is be possible to prove that the sequence of words that makes up a new word will
actually perform the required type transformation.

Let us take another example, this time we will use the word SWAP. This has a type signature of
(w1;w2 --- w2;w1). Notice that here we are using the type w1 to indicate a wildcard type, while the
type w2 indicates another wildcard type. Wildcards are items of unknown type.

We show a sequence of signatures by writing them next to each other. Thus a two word
(signature) sequence would be written (s1 --- s2)(t1 --- t2) where s1 is the stack image on entry
to the sequence and t2 is the stack image on exit from the sequence.

6.4 Rules

In order to discover if a sequence of type signatures perform the type transformation we require,
we use a number of rules for manipulating the signatures. The rules are broken into three logical groups:
composition; reduction and wildcard.

6.4.1 Composition Rules

The Composition Rules are used to rewrite two signatures into one new signature. We will use
the notation (s1 --- s2)(t1 --- t2) to indicate two adjacent type signatures, where s1, s2, t1 and
t2 are type sequences.

Rule 1: If s2 is null (there are no types indicated) then we can add the requirements of the second word
to that of the �rst, generating one signature.

(s1 --- s2)(t1 --- t2);#s2 = 0

(t1; s1 --- t2)

For example: (a; b ---)(c --- d) = (c; a; b --- d)

Here the �rst word takes arguments of type a and b o� the stack and returns no arguments. The
second word takes an argument of type c o� the stack and returns a value of type d . Hence the
argument c must be on the stack before this sequence is executed.

Rule 2: If t1 is null (the second word takes no arguments) then we can append the results of the second
word to those of the �rst word.

(s1 --- s2)(t1 --- t2);#t1 = 0

(s1 --- s2; t2)

Practical and Theoretical Aspects of Forth Software Development: The Cell Type 46

For example: (a --- b)(--- c) = (a --- b; c)

The second word takes no arguments and so the combination of the two sequences can be given by
simply adding t2 onto the end of s2.

Rule 3: If the last element of s2 does not match the last element of t1 then we have a type clash.

(s1 --- s2)(t1 --- t2); last s2 6= last t1
0

Eg: (a --- a; b)(a; c --- d) = 0

Here we have the �rst word leaving an element of type b on the stack while the second word requires
an element of type c. This is a type clash and is written as 0.

6.4.2 Reduction Rules

The following Reduction Rule is used to reduce the type signatures until a composition rule can
be used on the sequence.

Rule 4: If the last element of s2 is the same as the last element of t1 then the types do not clash and
the argument passing is internal to the sequence of operations. Hence we can rewrite the sequence
removing this element.

(s1 --- s2)(t1 --- t2); last s2 = last t1
(s1 --- front s2)(front t1 --- t2)

Eg: (a --- b)(a; b --- c) = (a ---)(a --- c)

The �rst word passes an argument of type b to the second word. This is internal to the sequence
of operation and so does not need to be shown.

6.4.3 Wildcard Rules

The remaining rules are intended to provide for wildcards, where a wildcard argument is able
to match with an argument of any known type. We refer to these as wildcard rules even though they are
reducing the type signature and thus can be considered as reduction rules. We indicate a known type as
being a member of the set K and a wildcard type as being a member of the set W.

Rule 5: If the last element of s2 is of a known type and the last element of t1 is a wildcard we remove
the matching items, rename any additional occurrences of the wildcard in the second signature with
the known type from the �rst signature.

(s1 --- s2)(t1 --- t2); last s2 2 K; last t1 2W

(s1 --- front s2)((front t1 --- t2)[last s2= last t1])

Example: (a --- b; c)(w1;w2 --- w1;w2;w1)

) (a --- b)((w1 --- w1;w2;w1)[c=w2])
) (a --- b)(w1 --- w1; c;w1)

The �rst word passes the second word an argument of type c which is matched with the wildcard
w2 expected by the second word. Thus we can determine the type of w2 for the second signature.

Rule 6: If the last element of s2 is a wildcard and the last element of t1 is of a known type, we can
remove the matching types and replace any occurrences of the wildcards in the �rst signature by
the known type.

(s1 --- s2)(t1 --- t2); last s2 2W; last t1 2 K

((s1 --- front s2)[last t1= last s2])(front t1 --- t2)

Practical and Theoretical Aspects of Forth Software Development: The Cell Type 47

For Example: (w1;w2 --- w2;w1)(a; b --- c)

) ((w1;w2 --- w2)[b=w1])(a --- c)

) (b;w2 --- w2)(a --- c)

We can determine the type of w1 because it must match the type b given in the second word.

Rule 7: If there are wildcard types in the �rst signature and similarly named wildcard types in the
second signature, we rename the wildcards in the second signature by decorating them with a
prime.

(s1 --- s2)(t1 --- t2); ran(s1 [s2) \ ran(t1 [t2) \W 6= ?

(s1 --- s2)((t1 --- t2)[w 0=w])

Eg: (w1;w2 --- w2;w1)(w1;w2 --- w2;w1)

) (w1;w2 --- w2;w1)((w1;w2 --- w2;w1)[w 0=w])
) (w1;w2 --- w2;w1)(w 0

1
;w 0

2
--- w 0

2
;w 0

1
)

We have renamed all of the wildcards in the second signature to be di�erent to those in the �rst
signature.

Rule 8: If the last element of s2 is a wildcard and the last element of t1 is a wildcard, we can remove
the matching wildcards, renaming all remaining occurrences of the wildcard in the second signature
with the wildcard from the �rst signature, provided that the wildcard does not already exist in the
second signature (there is not a name clash).

(s1 --- s2)(t1 --- t2); last s2 2W; last t1 2W; last s2 62 ran(t1 [t2)

(s1 --- front s2)((front t1 --- t2)[last s2= last t1])

Example: (w1;w2 --- w2;w1)(w 0
1;w

0
2 --- w 0

2;w
0
1)

) (w1;w2 --- w2)((w 0
1 --- w 0

2;w
0
1)[w1=w 0

2])
) (w1;w2 --- w2)(w 0

1 --- w1;w
0

1)

The wildcard w1 from the �rst signature has been matched with the wildcard w 0

2
from the second

signature. The operation of this rule is exactly the same as rule 4 with the exception that it is for
wildcard arguments and not for arguments of known types.

6.5 Simple Examples

Here are some examples of how you would compose two or more signatures together using these
rules.

1.

(a --- b; c; d)(w1;w2 --- w2;w1)

(a --- b; c)(w1 --- d ;w1) Resolve wildcard (5)

(a --- b)(--- d ; c) Resolve wildcard (5)

(a --- b; d ; c) Combine (2)

2.

(w1;w2;w3 --- w2;w3;w1)(a; b --- c)

(b;w2;w3 --- w2;w3)(a --- c) Resolve wildcard (6)

(b;w2; a --- w2)(--- c) Resolve wildcard (6)

(b;w2; a --- w2; c) Combine (2)

Since the naming of wildcards is arbitrary we could simply write the last line of this example as
(b;w ; a --- w ; c).

Practical and Theoretical Aspects of Forth Software Development: The Cell Type 48

3.

(w1;w2 --- w1;w2;w1)(w1;w2 --- w1;w2;w1)

(w1;w2 --- w1;w2;w1)(w 0
1
;w 0

2
--- w 0

1
;w 0

2
;w 0

1
) Rename (7)

(w1;w2 --- w1;w2)(w 0
1
--- w 0

1
;w1;w

0
1
) Match wildcards (8)

(w1;w2 --- w1)(--- w2;w1;w2) Match wildcards (8)

(w1;w2 --- w1;w2;w1;w2) Combine (2)

4. Let us assume the following signatures for Forth words:

DROP (w ---)

OVER (w1;w2 --- w1;w2;w1)

SWAP (w1;w2 --- w2;w1)

ROT (w1;w2;w3 --- w2;w3;w1)

We can show that the sequence OVER ROT DROP has the same type signature as the word SWAP:

(w1;w2 --- w1;w2;w1)(w1;w2;w3 --- w2;w3;w1)(w ---)

(w1;w2 --- w1;w2;w1)(w 0
1;w

0
2;w

0
3 --- w 0

2;w
0
3;w

0
1)(w ---) (7)

(w1;w2 --- w1;w2)(w 0
1;w

0
2 --- w 0

2;w1;w
0
1)(w ---) (8)

(w1;w2 --- w1)(w 0

1
--- w2;w1;w

0

1
)(w ---) (8)

(w1;w2 ---)(--- w2;w1;w1)(w ---) (8)

(w1;w2 --- w2;w1;w1)(w ---) (2)

(w1;w2 --- w2;w1)(---) (8)

(w1;w2 --- w2;w1) (2)

6.6 Multiple Signatures

It is possible for a Forth word to have more than one acceptable signature. Indeed there are
many words in Forth that require more than one signature. For this reason we have introduced the \+"
symbol to indicate the existence of another possible signature for the same word.

Let us take the Forth word AND, there are two functions associated with this word. The �rst
is that of a logical (Boolean) AND, while the second is that of a binary (bitwise) AND. The signature for
a Boolean AND is (ag ;ag --- ag), while the signature for a bitwise AND is (logical ; logical ---

logical), thus the true signature is:

sig(AND) = (ag ;ag --- ag) + (logical ; logical --- logical)

The correct signature will be used in composition due to the naming of a known type. Let
us assume that the Forth word IF has the signature (ag ---). When we come to compose the
sequence AND IF we will know (from the signature of IF) that the Boolean AND signature is required.

Notice that we have also introduced the notation sig(�) to indicate all of the possible signature
compositions of the phrase �.

6.7 Pass by reference

We indicate a pointer to a known type by writing �nk . Where the �n is used to indicate n levels
of indirection and the k is the known type being referenced. For simplicity we write �k to indicate �1k .
The notation �0k is the same as the basic type k without indirection.

Practical and Theoretical Aspects of Forth Software Development: The Cell Type 49

A possible de�nition of the Forth word @ would be (�w --- w), however we have not
de�ned the pointer type to be able to point to wildcard types. Hence the actual signature for @ is:X

k2K

(�k --- k)

This produces a collection of signatures, (one for every entry in K). The correct signature will
be selected when this word is being composed.

6.8 Control Structures

We use the ideas of multiple signatures (and summation) to show all of the possible paths
through a control sequence. This is best shown by example.

Let us take the Forth statement: IF � ELSE � THEN. We must compose the signature for both
cases of the IF condition. Hence for a true condition the sequence (ag ---)sig(�) exists, while for
a false condition the sequence (ag ---)sig(�) exists. These two signature can be written as one
multiple signature:

(ag ---) (sig (�) + sig (�))

For a more complex control structure, such as BEGIN � WHILE � REPEAT, we have no way of
knowing how many times the loop will be executed. We must therefore produce a multiple type signature
for all the possible di�erent number of iterations:

1X
i=0

(sig (�) (ag ---)sig (�))i sig (�)(ag ---)

However, it is normally the case that a loop of this form is \balanced" in terms of its stack
arguments. In the case of a balanced stack, the loop can be simpli�ed to a single term. If the sequence
sig(�)(ag ---)sig(�) can be reduced to a signature of (s --- s), (ie a balanced signature) we
can reduce this signature to:

(s --- s)sig(�)(ag ---)

In order to fully satisfy ourselves that a program is complete, we must follow though every single
path of execution. We can say that a word de�nition (or program) is type correct if its expected input
and output types can be reduced to the single signature holding the same input and output types.

For example: Let us de�ne a Forth word EXAMPLE which takes an input signature of s and is
expected to produce an output signature of t . The word is type correct if

sig(EXAMPLE) = (s --- t)

It should be noted that we are currently unable to check words that make use of the EXECUTE

word. For example, given the de�nition:

: TEST (char ---) 'TEST @ EXECUTE ;

it would be possible for us to check that the body of TEST is correct. However the action of TEST is to
execute the de�nition, the execution token of which, is stored in the variable 'TEST. As we do not know
the signature of this de�nition, we can not check against the speci�cation given, ie (char ---).

This problem may be overcome by expanding the rôle of the execution token to include a type
signature within a type signature. Ie, the signature (char, (char ---) ---) indicates a character
and an execution token are expected where the execution token has the signature of (char ---).
There are a number of ways in which one might resolve this restriction, several of which are currently
under investigation.

Practical and Theoretical Aspects of Forth Software Development: The Cell Type 50

6.9 Casting

There are occasions when a programmer will want to convert the type of a stack item that is
not catered for by the default matching type signatures. We have introduced a notation that will allow
the programmer to alter the current type signature at compile time.

Let us assume that the programmer would like to convert a single-cell integer into an execution
token. He would have to add the following line to his code:

<< int --- token >>

Where the Forth word << enters into a \alter type signature" mode. He then gives a represen-
tation of what he expects the current stack type signature to be (int). The word --- is used to indicate
the end of the current stack and the start of a description indicating what he would like the current stack
type signature to become (token). Finally, the word >> replaces the current type signature with the
required signature.

Obviously, there are many checks we can make at this point. The number of stack items expected
(between << and ---) must be equal to (or less than) the actual number of item calculated to be on the
stack (and of the correct type). The number of stack items given in the expected part must be the same
as the number given in the wanted part (between the --- and >>), thus protecting the compilers image
of the stack.

6.10 Strong vs Weak Typing

6.10.1 Strong Typing

In a strongly typed system, every variable will have a known type associated with it. Hence a
single-cell variable that has been de�ned to hold an integer could not hold a token as that would lead to
a type clash.

A strongly typed system would be di�cult to implement compared to a weakly typed system.
It would have to keep track of the type associated with each memory cell in the system where as a weakly
typed system would not retain this information. Due to the nature of types in Forth, a strongly typed
system would require the programmer to give additional information. See sections 4.6 and 7.3.1 for a
discussion on Forth's type structure.

In a strongly type system, the programmer would have the bene�t of peace of mind, insomuch
as he knows that the system will report an error if he attempts to develop code that uses the stack in
what would be considered the wrong way.

This can be seen by examining the following code:

X @ EXECUTE

This would have the following type signatures:

(--- �int)(�int --- int)(token ---)

This would obviously clash on the (�int --- int)(token ---) section.
In order to compile this code the programmer would have to write:

X @ << int --- token >> EXECUTE

To convert the int returned from the @ into the token that is excepted by EXECUTE. Thus the programmer
has to explicitly instruct the compiler to make the conversion and allow this code.

Practical and Theoretical Aspects of Forth Software Development: The Cell Type 51

6.10.2 Weak Typing

In a weakly typed, system all memory cells will be de�ned to hold any of the known types. This
is simpler to implement, however it does not bring with it the same peace of mind that a strongly typed
system would.

If we take the same code as before:

X @ EXECUTE

which will now have a type signature of:

(--- �k)(�token --- token)(token ---)

We can see that in the weakly typed system the X returns a referenced known type (�k) this will
be matched with the referenced token (�token) type required by @. Thus, this code will be acceptable to
a weakly typed system. Hence, a weakly typed system can aid in program construction but will not be
able to catch misusage of variables.

52

Chapter 7

A FORTH Type Checker

In this chapter we look at the possibility of implementing a Forth type checker based on the
rules given in the previous chapter. We will be calling this type checking program \Flint" by analogy
with the lint program used for checking C programs.

Flint is to provide a consistency check of Forth source code. It will examine a �le, checking
high level Forth de�nitions for stack depth and stack types. If an error is detected, the o�ending word,
line, �le and an appropriate error (or warning) message will be written to an error log. Checking will
continue after the erroneous word.

In this chapter we give an initial speci�cation for the Flint program.

7.1 Invocation

The Flint program should be used from the command line. The user will give the command
\flint foo" to instruct the Flint system to check the Forth source code given in the �le \foo.fth".
The system should also check all of the \include" �les used.

The user should have the ability to select warnings or errors only. The default being that both
warnings and errors are written to the error log (in this instance \foo.log"). The user should be able to
provide a command line switch to indicate the production the form of report they wish, possible switches
are:

-E Report errors only to the error log.

-W Report warnings only to the error log.

-C Check the �le, reporting number of errors and warnings to the video. Does not produce
an error log but simply counts the errors.

-V Produce verbose error/warning reports.

-S Produce additional statistical information at the end of the error log.

-O Set maximum stack size (for overow checking).

For such a system to be of any real practical use it must have the ability of being extended by
the application code. As such, the system is to provide a basic programming ability that can be \hidden"
from the Forth compiler.

7.2 Stack Notation

For this system to operate a formal stack notation system must be provided. A system based
on the following rules should be provided:

Practical and Theoretical Aspects of Forth Software Development: A Forth Type Checker 53

<stack-de�nition> ::= [<stack-items>] --- [<stack-items>]
<stack-items> ::= <stack-item> [<stack-item>]
<stack-item> ::= [<reference>] <type>
<reference> ::= *[<reference>]

Thus the user is allowed to place as many type indicators before the --- part (verbalised as
\gives" or \giving") indicating what is currently on the stack. He may also place as many type indicators
after the \gives" indicating what is left on the stack after the operation has been performed. The type
indicator may consist of any number of references to a given type, where <type> is a known type (of
a known type class) de�ned by the system (or by the user) or a wildcard. A reference to a type is the
address of the type. Hence if we have a type \u" indicating an \unsigned integer" (of class \single-cell")
then we indicate the \address of an unsigned integer" with the type indicator *u". The type **u" is the
\address of an address of an unsigned integer" (this is the same as the �2u notation used in section 6.7).

In this discussion we have referred to \user-de�ned types" and \classes of types". This relates
back to the need to allow an application to expand on the types available in the checking mechanism.

7.3 Commands

The commands of the type checking mechanism should be totally \hidden" from the normal
Forth compiler. Hence all control operators must be given in comments:

<command> ::= n <function> [; <comment>]
j (<function> [; <comment>])

Thus provided that the command<function> is the �rst word in a comment the function will be
invoked. If Flint does not recognise the text at the start of a comment to be a command, the comment
is ignored and processing continues from the end of the comment. A Forth system will simply ignore
the comments, thus \hiding" the type commands from the Forth compiler.

The following table lists the possible commands. The requirement for the command and its
function is given in more detail in the following sections.

<function> ::= <type-command>
j <stack-command>
j <assume-command>
j <assert-command>
j <syntax-command>

7.3.1 Classes

There are to be a number of type classes. The user will not be able to provide any additional
type classes1 this must be coded into the Flint system. The system will have the following classes:

Single-Cell: The base type for all items that occupy a single cell. There is provision for up to 255 pre-
and user-de�ned types of this class.

Double-Cell: The class of types that require two cells on the stack. If any attempt is made to access part
of the item then a type violation is reported. There is provision for up to 255 pre- and user-de�ned
types of this class.

1This is a limitation of the proposed implementationmethod. It is hoped that a method of allowing the user to add new
type classes may be addressed in the future.

Practical and Theoretical Aspects of Forth Software Development: A Forth Type Checker 54

Two-Cell: A class of types that may be considered a double number at times, but is really made up of
two single-cell types. Such types use double number words (such as 2! and 2@) when accessing two
single-cell items. There is provision for up to 255 pre- and user-de�ned types of this class.

Reference: A special class for address types. All locations must have a type associated with it. It is
possible to make reference to all possible types2 (no matter their class). Thus the reference type
must be able to cater for all possible classes including a reference to a reference to a structure type.
So, the reference class is really a super-class encompassing references to all types within it. Flint
should be able to cater for up to 255 levels of referencing (ie �255k).

Wildcard: A special class of single-cell wildcards. An item of type wildcard will match with any other
single-cell type. This is used in the de�nition of words such as SWAP where the de�nition is \w1 w2

--- w2 w1" (verbalised as \wild-one, wild-two, gives wild-two, wild-one"). w1 and w2 are considered
to be two separate types of class wildcard. Thus when w1 is matched to a known type, w2 may be
matched with another. There are 255 possible wildcard types under this class.

Double-Wildcard: A special class of double-cell wildcards. This operates in the same way as single-
cell wildcards except that a double-cell wildcard will match with any value of the double-cell class,
two-cell class or two values of the single-cell class. There are 255 possible wildcard types under this
class.

7.3.2 Type Command

The type command allows the application programmer to add a new type to the list of known
types. The type is de�ned to be of a given type-class. The format of the type command is:

<type-command> ::= type: single-cell <type>
j type: double-cell <type>
j type: two-cell <type> =

<cell-item><cell-item>
j type: structure <type> = <stack-items>

The type: command is followed by a one of four type-class identi�ers. The name of the new
type is then given with the remainder of the command dependent on the class identi�er:

single-cell The new type will be de�ned to be of one cell in length. All of the base types are de�ned
to be of the single-cell class.

double-cell The new type is de�ned to be two cells long. Any attempt to gain access to a part of the
type will be considered a type violation. For such access an \assume" command will be required to
convert the double cell into two single cells.

two-cell The new type is de�ned to be two cells long. The type name is followed by two <cell-item>s
(single-cell type names) that comprise this double cell. Ie, to de�ne a co-ordinate pair that may
be broken down into its two (single cell) signed integer parts. Hence when the two-cell type is
used the system considers the stack image to be of the two single-cell types. Thus allowing a
convenient short hand notation for such \doubles".

structure The new type is a compound structure consisting of other stack items3. All the types must
be de�ned before the structure is declared. A structure may only be passed by reference. Any
attempt to access the structure will result in a type violation. When an item is to be extracted
from the structure an \assume" command should be used4.

2Pass the address of a type, no matter what the type.
3Including possible other structures and references.
4Given that we know the size and position of each element in the structure, it should be possible to validate an access

into a structure. This extension has not, as yet, been investigated.

Practical and Theoretical Aspects of Forth Software Development: A Forth Type Checker 55

7.3.3 Stack Command

The stack command is used to give the expected stack operation of a word. Its format is:

<stack-command> ::= stack : <stack-de�nition>

The system will scan the de�nition of the next word to check that its de�nition meets the given
stack. Flint will assume the stack will be as given on entry and check that the stack is as given on exit.
If the expected exit condition is not the same as the \found" condition, an error is reported.

When further words use the word, the \expected" condition will be used and the word will be
agged with a warning.

The given stack image will be placed into a bu�er and will be associated with all new words
until a new stack: command is given, a ; is found or an \include" is found. Thus the following code
fragments are all valid.

\ Stack: --- *n \ Stack: w --- w w : xxx (stack: w --- w w)

VARIABLE A : xxx : : :
VARIABLE B : : : ; ;

It may be possible to do without the \stack:" part of this command and assume that all
commands are \stack" unless their name is found. Thus, the format of the command would now read:

<stack-command> ::= [stack :] <stack-de�nition>

However, this would make it more di�cult to write good comments.

7.3.4 Assume Command

The assume command will force the system to make an assumption about the current stack
type. Its format is:

<assume-command> ::= assume : <stack-items> --- <stack-items>

Flint will �rst check that its current stack image is the same as the stack image given in the
command, before the \gives". Only the top most elements need be given. It will then replace those
elements with the ones given in the stack image after the \gives". An example usage would be to convert
an integer into an execution token:

\ assume: int --- token

This allows the programmer to \cast" form one type to another without supplying code to perform the
transformation. The user is allowed to transform any class into any class. The number of <stack-items>
on either side of the \gives" may vary. Hence:

\ assume: w ---

is a valid assumption that removes a single-cell item from the stack. While:

\ assume: --- n

is also a valid assumption that introduces a signed integer to the stack.

Practical and Theoretical Aspects of Forth Software Development: A Forth Type Checker 56

7.3.5 Assert Command

The assert command instructs the system to check the current stack image against that given
in the command. Its format is:

<assert-command> ::= assert : <stack-items>
j check : <stack-items>

If the current stack image does not match that given in the command, an error is reported giving
the current stack image. If the stack holds more items than is given in the assert command, only those
items given will be checked.

It may be better to insist that the given stack must match all of the current stack items, thus
forcing the programmer to identify the complete stack and not only the top-most elements they are
interested in. This has the advantage that the programmer will realise how many items are on the stack.
This could also be extended to include a special stack item of \: : :", as the �rst element to indicate an
unknown number of elements before the stack description, thus providing the \partial" check we currently
have.

7.3.6 Syntax Command

The syntax command provides the ability for the programmer to de�ne additional syntax struc-
tures. Its format is:

<syntax-command> ::= syntax : <word><syntax-items>
<syntax-items> ::= <syntax-item> [<syntax-item>]
<syntax-item> ::= <<text>> <delimiter>

The syntax command is only required when de�ning a word that de�nes its own syntax. The
following shows some Forth words and their syntax de�nitions. Note the space delimiter () on the
CREATE de�nition.

CREATE \ syntax: CREATE <word>

ABORT" \ syntax: ABORT" <error message>"

This facility is provided so that, when the new <word> is used, the system can take account
of the fact that the word will scan ahead in the input stream (as far as the indicated <delimiter>).
The given syntax is associated with the next or currently de�ned word. Thus the following two code
fragments will give the same results:

\ stack: --- : mess (stack: ---)

\ syntax: mess <id> <message># (syntax: mess <id> <message>#)

: mess : : : ; : : : ;

It should be possible for Flint to check that any word de�ned as having a syntax does have the
given syntax. Hence any word that includes a syntax word (ie, uses a word with a syntax) but does not
declare a syntax, could generate a warning. If there is a declared syntax and the \found" syntax does
not match then an error may be reported.

7.4 Variable Stack Items

7.4.1 Or | |

There are words that would bene�t from having more than one possible stack image. There are
occasions where you would not want to place a wildcard, however, the value may be of two (or more)

Practical and Theoretical Aspects of Forth Software Development: A Forth Type Checker 57

types. Thus we introduce the \|" notation to indicate a possible other valid type for a given stack entry.
Hence, to indicate that a word takes a single item from the stack, being an unsigned integer (u) or a
signed integer (n), the de�nition would be:

u | n ---

Note, that the | is considered to be left associative. Hence:

n u | n | f --- n | u f

indicates that the word takes two value from the stack, the �rst being a signed integer (of type n) and
the second being an unsigned integer (u) or a signed integer (n) or a boolean ag (f). The result of the
function is either a singed integer (n) or an unsigned integer (u), and a ag (f).

Flint will treat such an entry as a special (restricted) form of wildcard. When the wildcard is
matched with a known type, it becomes that type for the rest of the de�nition.

We must rede�ne <stack-image> thus:

<stack-item> ::= [<reference-part>] <type> [| <stack-item>]

7.4.2 Alternative descriptions | +

There are words that have a stack image that do not di�er in type but in the number of
arguments. One such word is ?DUP, for this we introduce the \+" notation. A stack de�nition for the
word ?DUP could be:

u --- u + u --- u u

Indicating that the word takes an unsigned value (u) and returns an unsigned value, or it takes
an unsigned value and returns two unsigned values.

On words such as these, Flint will match the relative stack description dependent on the
matching types. When such a word is used in a de�nition, the system will pass though that de�nition
twice, using di�erent versions of the stack de�nition.

This form of programming is not recommended, thus the use of such words will produce a
warning and all words that are de�ned using it will be agged with a warning.

Thus we must rede�ne <stack-de�nition>:

<stack-de�nition> ::= [<stack-items>] --- [<stack-items>]
[+ <stack-de�nition>]

It should be noted that the \|" notation can be thought of as a special form of the \+" notation.
Ie, that stack de�nition:

n --- n | f

can be thought of as being the same as the stack de�nition:

n --- n + n --- f

Practical and Theoretical Aspects of Forth Software Development: A Forth Type Checker 58

7.5 Flow Control

Flint is able to handle the basic ow control words. There is no mechanism for extending this
system to cater for application de�ned control mechanisms. However this could be added by taking note
of where the ow control words are used. This will be made simpler by the adoption of the Ansi standard
for the writing of new control words.

The following is a list of ow control words and the action take by Flint when the word is
encountered:

RECURSE will compare the current stack image to the entry stack assumption. If there is a type mismatch
an error is reported. Note: if additional items are left on the stack, this is not considered an error.

?DUP is de�ned as \u --- false + u --- u true" thus the code will be checked twice, once for the
\true" condition, once for the \false" condition.

IF : : : is de�ned as \flag --- " (where \flag" is de�ned as \true | false"). It will consume the
ag and save the current stack image in a bu�er.

: : :ELSE : : : will swap the contents of the saved bu�er with the current stack image.

: : :THEN compares the current stack image with the one in the saved bu�er. Thus, checking that the
stack image has not been changed by the IF condition. This also checks that an IF: : :ELSE: : :THEN
statement leaves the stack in the same condition, no matter which execution path is taken. An
error is produced if these stack images do not match.

BEGIN : : : will save the current stack image in a bu�er for later processing.

: : :AGAIN compares the current stack image to the bu�ered one. If they do not match exactly an error
is produced. Thus a BEGIN: : :AGAIN sequence must have a balanced stack.

: : :UNTIL consumes a ag and then compares the current stack image with the bu�ered one. If they do
not match an error is given.

: : :WHILE : : : will consume a ag, then compares the current stack image against the bu�ered image.
An error exists if they do not match.

: : :REPEAT compares the current stack image against the bu�ered one, reporting an error if they di�er.
Hence the stack image must be the same at BEGIN, WHILE (except for the ag) and REPEAT. Thus,
no matter how many times the loop is executed we know the condition of the stack on exit.

DO : : : will consume two (signed) numbers, then save the current stack image.

: : :LEAVE : : : , de�nition take from (ANSI 1991), compares the current stack image against the bu�ered
image that will take e�ect if the leave were to be executed. An error exists if there is a mismatch.

: : :LOOP checks that the current stack image matches with the bu�ered one. An error exists if not. Note
that this enforces \balanced" stacks when using the DO: : :LOOP structure.

: : :+LOOP is the same as LOOP except it �rst consumes a signed integer.

Note: If at any comparison too many items are found in the current image a \possible overow" error is
produced. If too few items are found a \possible underow" error is given. As we are unable to discover
how many times a loop is executed these must be errors and not warnings.

Flint may be able to \syntax check" the high level code, stopping the mismatching of control
ow words.

Practical and Theoretical Aspects of Forth Software Development: A Forth Type Checker 59

7.6 De�ning words

De�ning words can be broken into two parts. The \Pre-de�ned" words and the building blocks
to allow \user-de�ned" de�ning words.

7.6.1 Pre-de�ned

CODE words cannot be checked. Thus the given stack comment is taken to be correct. If no stack
comment is given then an error is recorded. The system could be made to give a warning when the
CODE word was used indicating that the word could not be fully type-checked.

When a method of type checking assembler code is developed, (possibly similar to the type checking
system given in chapter 6) it may be possible to provide type checking of CODE level words. How-
ever, this currently does not exist (to our knowledge), thus we are unable to type check assembler
de�nitions.

: will de�ne an entry in the data-base, associating the (checked) stack comment with the word. Later
(when the word is used) its stack comment is assumed to be correct. If an error occurred when
checking the de�nition, a warning is given for any word that uses it indicating the uncertain status
of the check.

VARIABLE de�nes a word with the stack description of \ --- *w" (giving a reference to a wildcard).
Thus allowing any single-cell type to be stored in the variable. If a stack comment is given then it
will be used (provided that it matches with the default).

2VARIABLE acts in the same way as VARIABLE except that the default stack description is \ --- *dw"
(giving a reference to a double wildcard).

7.6.2 User-de�ned

CREATE will mark the current word as a de�ning word. Words de�ned using this word will inherit the
run time stack signature associated with the word. The system may also check the syntax de�nition
of the de�ning word.

DOES> will check that the current stack signature matches the stack command given for the word. It
will then take the following stack command as the run-time stack signature. The system will check
that the typing of the run-time part of the word is correct. Note that the address reference placed
on the stack by the DOES> word must be given in the stack comment.

;CODE will check that the current stack signature matches with the signature given for the word. An
error is reported if the two signatures do not match. As code entries cannot be checked the run-time
stack signature is assumed to be correct. When the de�ned word is used the system can be made
to give a warning indicating the use of an unchecked word.

Thus a de�ning word may be de�ned:

: CCONST \ syntax: CCONST <char> <word>

\ stack: ---

BL WORD 1+ C@ CREATE C,

DOES> \ stack: *c --- c

C@

;

Practical and Theoretical Aspects of Forth Software Development: A Forth Type Checker 60

7.7 Vocabularies

To increase the speed of the system, it will store the checked type signature as part of a word's
header de�nition. As the type signature is being stored along with the word name, the vocabulary
structure o�ered by the host system will automatically be adhered to. Thus, Flint will need to follow
the host systems vocabulary structure. Adoption of the standard vocabulary mechanism (such as the one
proposed in the Ansi standard) would be an advantage to this system.

7.8 Error Log

The error log is the output �le from the Flint system. It will consist mainly of error and
warning reports.

7.8.1 Error report

The format of the error/warning report will look something like:

<level>: <�lename> (<line-no>)

<word>:- <message>.

where:

<level> indicates the level of the error. That is to say that it is \Error" or \Warning", where \Error"
is fatal and must be resolved, \Warning" is only informative and is probably caused by a previous
error.

<�lename> is the name of the �le being processed when the error or warning was discovered. This is
the name of the current �le, thus if the main �le includes sub-�les, this will be the name of the
sub-�le.

< line-no > is the line number in the given �le upon which the error or warning occurred. More
importantly, it is the line at which the error/warning was discovered.

<word> is the word de�nition that was being checked at the time the error or warning was produced.

<message> is a single line text message given the error or warning condition.

7.8.2 Verbose reports

If the verbose ag (-V) is given on the command line the reports will have four parts:

<level>: <�lename> (<line-no>)
<word> :- <message>.
<stack>
<processed-line>

<unprocessed-line>

where <level>, <�lename>, <line-no>, <word> and <message> are the same as for the normal error
log, <stack>, <processed-line> and <unprocessed-line> are given as:

<stack> is the current stack image held by the system at the point of error.

<processed-line> shows the error line. The line up to the point at which the error was discovered is
shown on this line.

Practical and Theoretical Aspects of Forth Software Development: A Forth Type Checker 61

<unprocessed-line> shows what is left on the line. If the report was simply a warning, the text on this
line will be processed. However, if the report was an error then the rest of this line and indeed the
de�nition is ignored.

It should also be noticed that each error or warning starts at the �rst character of the line. All
subsequent lines are indented, leaving a space at the start of the line and a blank line between errors.
The system is designed in this way so as to ease the automatic searching of the error log.

7.8.3 Statistics

At the end of the error log the system will output the following statistics that it has managed
to discover during the type checking:

<n> Error[s]
<n> Warning[s]

Note that the optional \s" is only left o� the word when the number <n> is 1. This is correct English
and should be provided on all such programs.

7.8.4 Statistics ag

When the -S (statistics) command line option is given then the following lines of additional
statistical information is also given:

<n> line[s],
<n> file[s],
<n> assumption[s],
<n> assert[s],
<n> definition[s],
<n> user defined type[s].

Although the information given in these statistics is only concerned with the type checking,
there is no reason why the system could not be made to give statistical information, and software metrics
(Hand 1988), should the user require it.

7.9 Problems

When this system is implemented there are several design decisions that must be made. They
are:

1. How to check if a word's de�nition will cause a stack underow to occur and how to report the
condition.

2. How to check that a de�nition will not cause a stack overow to occur when executed. If it will,
how is the condition to be reported.

3. How is the system to handle the error reporting around the PICK and ROLL words. The system
could enforce the use of the assert: command before the word and the assume: command after
the word, reporting an error if they are not presence. Alternatively, it can simply mark the word
as being unchecked due to the presents of these words.

4. Whether or not to implement the syntax: command. They will also need to add checking to
compare the declared syntax is correct compared with the word's de�nition.

Practical and Theoretical Aspects of Forth Software Development: A Forth Type Checker 62

5. The capability to type check \in-to" a structure de�nition. This will require the de�nition of a
standard structure de�nition operator within the Forth system.

As Flint is mainly concerned with the type checking of Forth programs, these problems are
incidental and could be seen as optional extras.

63

Chapter 8

The Event Calculus

Formal Speci�cation of Real Time
Systems by means of Diagrams and Z schemas

The \Event Calculus" is a diagrammatic notation which provides an easily used means of for-
mally specifying the behaviour of concurrent systems. It can describe synchronous and asynchronous
communications, data ow modelling and function application, and the expression of temporal con-
straints. It has the ability to abbreviate the descriptions of complex state changes, such as data base
updates, by means of Z schemas.

The Calculus models system states with sets of parameterised state machines which can com-
municate via n way synchronisations known as \events". In comparison with process algebras such as
Csp, Ccs and Lotos, the calculus is relatively easy for a non specialist to use. It is also easier to present
speci�cations that can be understood by developers who do not have a sophisticated mathematical back-
ground. The calculus provides a good control of the level of abstraction used in a model.

In this chapter we introduce the Event Calculus with a series of examples and give a formal
mathematical interpretation of the diagram notation.

8.1 Introduction

The Event Calculus resembles process algebras such as Ccs (Milner 1989) and Csp (Hoare
1985) in that the mathematical model of communication derives from a simultaneous state change in
more than one state machine. We provide a model theoretic description of how the behaviour of a
composite state machine can be derived from the behaviour of its component state machines. The basic
model is then extended to include asynchronous events, value passing, function application and time.
Finally, we introduce the use of supplementary Z schemas to augment the diagram notation and the use
of \Schema Transitions" to describe complex state changes such as data base updates.

An important aim of the calculus is that the use of diagrams should give the user a more intuitive
and direct view of system behaviour than can be achieved by algebraic expressions alone. Unlike less
formal diagram notations, such as DFDs, our diagrams give a complete model of system behaviour and
may be thought of as the user interface to an underlying algebra of machine behaviours. Unlike other
formal models of concurrency which can also provide a diagrammatic representation of simple processes,
the diagram notation for the Event Calculus is fully equipped to deal with complex examples involving
parameter passing, function application, asynchronous events and data base updates.

The Event Calculus is particularly well suited for use with the Forth language. Each Forth
actor (or task) can be represented in the Event Calculus as a state machine.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 64

8.2 State Machines

The Event Calculus is based on state machines which are associated with a set of state changing
\events". Our state machines are described in terms of a set of states, a set of events and a next state
function which maps a state event pair to a new state.

Our �rst example consists of a pair of state machines, V and C . The next state functions V
and C are as shown in �gure 8.1.

&%
'$

&%
'$
&%
'$&%

'$
V0

V1 V2

V3

one ecu
two ecu

small
big

collect

&%
'$

&%
'$&%

'$
&%
'$&%

'$
&%
'$&%

'$
&%
'$

?

?

?

?

?

?

C1

C3

C5

C7 C8

C6

C4

C2

two ecu

big

collectcollect

small

one ecu

&%
'$

C0

get1ecu get2ecu�
�
�=

Q
Q
QQs

@
@
@
@R

�
�

��=

�
�

�
�	

Q
Q
QQs

$

%

�

-one ecu

Figure 8.1: The state machines V and C

V is a simple futuristic vending machine which can accept one ecu or two ecu coins and can
dispense either a small or big chocolate bar.

states V = fV0;V1;V2;V3g

events V = fone ecu; two ecu; small ; big ; collectg

C is a child who gets a one ecu coin or a two ecu coin and inserts it into the vending machine
to purchase a chocolate bar.

states C = fC0;C1;C2;C3;C4;C5;C6;C7;C8g

events C = fget1ecu; get2ecu; one ecu; two ecu; small ; big ; collectg

Some of the events of C , such as one ecu, are shared with V . When a shared event occurs both
C and V will simultaneously move to a new state. We call such an event \synchronous". The child puts
the coin in at the same instant as the machine has the coin put in.

We now describe (informally) the Event Calculus rules for determining the behaviour of the
composite machine fV ;Cg.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 65

Let us suppose we start in state fV0;C0g. In state V0 machine V is ready to participate in
events one ecu and two ecu. However, these are both events that are in the event set of machine C .
Events are enabled only when all machines capable of taking part in them are ready to do so. Thus from
our initial state these events are disabled and cannot occur.

In state C0, machine C is ready to perform the events get1ecu and get2ecu. These events are
unique to machine C , so they are enabled (We could also say they can occur because all machines capable
of taking part in them are ready to do so, the only such machine being C).

At each stage, any enabled event can occur. Suppose get1ecu occurs. The composite machine
is now in state fV0;C1g. We denote this state change by writing:

fV0;C0g
get1ecu
�������!fV0;C1g

Now both C and V are ready to take part in the event one ecu. This is now the only event
enabled. In fact the remainder of the behaviour of fV ;Cg is deterministic. All possible composite
behaviours of fV ;Cg (there are only two) are shown in �gure 8.2.

f V0;C7 g

f V3;C5 g

f V1;C3 g

f V0;C1 g f V0;C2 g

f V2;C4 g

f V3;C6 g

f V0;C8 g

f V0;C0 g

get1ecu get2ecu

one ecu

small

collect collect

big

two ecu

??

? ?

? ?

�

S
S
S
SSw

Figure 8.2: Graph of behaviours for the model of �gure 8.1

We follow a naming convention that uses machine names derived from the common root of the
state names for that machine. Thus the state names V0, V1, V2 and V3 have a common root V which
is the name of the corresponding machine.

8.3 The Formal Model

We now provide formal rules for deriving the behaviour of a set of machines from the next state
functions of each individual machine.

Basic types for our discussion are:

[MACHINE ; STATE ;EVENT]

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 66

MACHINE is the set of state machines (or more precisely state machine identi�ers).

STATE is the set of possible machine states.

EVENT is the set of events.

We de�ne a \next state" function:

 : MACHINE ! ((STATE � EVENT) 7! STATE)

The idea here is that is a function from machines to next state functions. Thus m will return
the next state function for machine m.

We de�ne a function to identify the set of states associated with a particular machine and to
specify that each state is associated with only one machine.

states :MACHINE ! PSTATE

8m :MACHINE �
states m = ran(m) [dom (dom (m))

8m1;m2 :MACHINE �
m1 6= m2) states m1 \ states m2 = ?

We de�ne a function to return the unique machine associated with a given state.

machine == fs : STATE ; m :MACHINE j s 2 state m � s 7! mg

The basis of the Event Calculus is the de�nition of a function � that describes the behaviour of
a set of possibly communicating machines in terms of the next state functions of each individual machine.
First, however, we de�ne some functions and sets which we will use to make the de�nition of � more
readable.

First, we de�ne a function that tells us whether an event can occur when a machine is in a given
state.

ready : STATE � EVENT ! B

8 e : EVENT ; s : STATE �
ready(s;e) = (s;e) 2 dom ((machine s))

Considering our vending machine V as an example:

ready(V0; one ecu) = true as event one ecu can occur in state V0.
ready(V0; big) = false as event big cannot occur in state V0.

The repertoire of a machine is the set of all events in which it can participate. The set of events
associated with the next state function of a machine is a subset of its repertoire1.

events; repertoire : MACHINE ! PEVENT

8m :MACHINE � events m = ran (dom(m)) ^ events � repertoire

When considering a set of state machines we think of an event as causing a composite state
change which may a�ect more than one machine. Valid composite states are ones in which each constituent
state represents the state of a di�erent machine. Formally, we de�ne the set of valid state sets as follows:

validstateset =
fsset : PSTATE j 8 s1; s2 : sset �

s1 6= s2) machine s1 6= machine s2g

1This distinction is useful because we may wish to provide a next state function which shows only part of the behaviour
of a machine, a subset of events from a machines repertoire.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 67

In the context of a composite state set, an event may only occur if every machine which has that
event in its repertoire is ready for it. We de�ne a boolean function that will tell us whether a particular
event is enabled for a given composite state.

enabled : (validstateset� EVENT)! B

8 sset : validstateset ; e : EVENT �
enabled(sset;e) =

(8 s : sset � e 2 repertoire(machine s)) ready(s;e))
^ (9 s : sset � ready(s;e))

We now de�ne the function � which derives the behaviour of a set of state machines from the
individual behaviours of each machine plus the enabling rule for composite events. We will de�ne � to
take a set of machines as its argument and to return a next state function for that set of machines. � is
described by giving its domain and by describing its application to an arbitrary element of its domain.

� : PMACHINE ! ((validstateset� EVENT)! validstateset)

8 sset : validstateset ; e : EVENT ; mset : PMACHINE �
dom(�mset) = fe : EVENT ; sset : validstateset j

machine (j sset j) = mset ^ enabled(sset ;e) � (sset ;e)g
^

(sset ;e) 2 dom(�mset))
(�mset)(sset ;e) = fs 0 : STATE j

s 0 2 sset ^ e 62 events(machine s 0)
_

9 s : sset � e 2 events(machine s) ^ s 0 = ((machine s))(s; e)g

8.4 An Algebra of machine behaviours

The function � maps from a set of machines to a function which describes the possible composite
behaviours of those machines. We now introduce a binary operation to compose such behaviours. We
write this operation as k (pronounced \par").

k : range �� range �! �

8mset1;mset2 : PMACHINES �
�mset1k�mset2 = �(mset1 [mset2)

� is now a homomorphism from the algebra of set unions
[PMACHINES ;[] to the algebra of machine behaviours [range �; k]. It follows that [range �; k] is a
commutative monoid (ie, k is commutative, associative and has a unit element).

8.5 Labelled Transitions

For arbitrary s; t : STATE ; e : EVENT we introduce the notation:

s
e
��! t

to indicate that the machine associated with state s goes from state s to state t when event e occurs.
We call this a \labelled transition". Formally the notation is introduced as follows.

�! : STATE � EVENT � STATE ! B

s
e
��! t , ((machine s))(s; e) = t

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 68

8.6 Simple Examples

In this section we provide some simple examples of Event Calculus models and at the same time
introduce some additional notations for use in Event Calculus diagrams.

8.6.1 The speci�cation of mutual exclusion (without fairness)

Consider two processes A and B , and a semaphore S .

states A = fA0;A1g
states B = fB0;B1g
states S = fS0; S1g

A1 and B1 are the critical regions of processes A and B .
S will be in state S1 when one of the processes is inside its critical region and in state S0

otherwise.
Starting from initial composite state fA0;B0; S0g, any composite state which includes fA1;B1g

will be impossible to reach.
The individual machines are as shown in �gure 8.3.

&%
'$
&%
'$

&%
'$
&%
'$

&%
'$
&%
'$�

�-

�

A1

A0 S0

S1 B1

B0aget

arel

bget

brel

_

aget

bget brel

arel

_

'

&-

'

&-

'

&

�

�

��

�

�

Figure 8.3: Mutual exclusion without fairness

This diagram introduces a convention by which two alternative transitions with the same start
and end states are shown by a single line with an appropriate label. For example the arc from S0 to S1
which is labelled aget _ bget .

Suppose we start the model in composite state fA0;B0; S0g. The possible transitions for the
composite state are as shown in �gure 8.4.

f A1; S1;B0 g f A0; S1;B1 g

f A0; S0;B0 g

bgetaget

brelarel
Z
Z
Z
Z
ZZ~

�
�

�
�

�
�+

' $- �

Figure 8.4: Graph of behaviours for the model given in �gure 8.3

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 69

When two (or more) alternative transitions are available (in this case aget and bget) it is upto
the designer to �re and trace the events as appropriate (see the trace on page 72 of section 8.6.4 for an
example of tracing events).

If we were to give machine A precedence over machine B , we would observe the unfair nature
of this model, in that machine B will never be capable of reaching state B1. The event bget is only valid
when we have the composite state fA0;B0; S0g, however the event aget is also valid in this state. As we
are favouring machine A over machine B , we now �re the aget event, thus preventing the bget event from
ever being �red (a condition referred to as inde�nite postponement).

8.6.2 Asynchronous Events

Machine A broadcasts job requests to machines B and C . The broadcast event, which we denote
by job, is to be asynchronous. That is, B and C do not have to be ready for the broadcast for it to occur.
We distinguish such asynchronous events in our diagram notation by underlining them in the graph of
the state machine which originates them.

In this simple model, A knows that it can have two jobs outstanding at any one time and will
not attempt to broadcast a further job until one of these is done (see �gure 8.5).

&%
'$
&%
'$

back

cack
_

&%
'$

?

&%
'$
&%
'$

?

&%
'$
&%
'$

?

&%
'$

?

&%
'$
&%
'$

?

&%
'$

?

back

cack
_

A0

A1

A2

A3

A4

B0

B1

B2

C0

C1

C2

job

job

job back

job

cack

'

&

- �

�

�'

&

!

- � cackbdone cdone back

_
bdone

cdone

_
bdone

cdone

?

?

#

"

#

"
-

-

Figure 8.5: An example using asynchronous broadcasts

Now consider the following composite state transitions from an initial composite state fA0;B0;C0g

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 70

fA0;B0;C0g
job
���!fA1;B1;C1g (8.1)

fA1;B1;C1g
back
����!fA2;B2;C0g (8.2)

fA2;B2;C0g
job
���!fA3;B2;C1g (8.3)

fA3;B2;C1g
cack
����!fA4;B2;C2g (8.4)

According to our laws for composite transitions, the composite transitions 8.3 and 8.4 cannot
occur, as they are not synchronised. To allow asynchronous events to be declared we must add some
additional structure to our calculus.

One possibility would be to distinguish two types of event (synchronous and asynchronous) and
formulate rules for the underlying calculus accordingly. Another approach, which we follow here, is to
describe asynchronous events in terms of the existing calculus. In terms of the underlying formalism, the
e�ect of declaring job as an asynchronous event originated by machine A is to add some additional null
transitions to B and C to allow job to occur in all states of B and C .

Let the original next state function as given by the above graphs be 0. We construct 1 which
allows job to be asynchronously originated by A:

 1m =
if m = A then 0A

else[
s2states m

f(s; job) 7! sg � 0

The idea is to add labelled transitions of the form s
job
���! s to the next state functions of B and

C for all states s which are not otherwise ready to participate in the event job.
The event back is asynchronously originated by B and event cack is asynchronously originated

by C . We can construct appropriate next state functions to express this as follows.
From 1 we can construct 2 which allows back to be asynchronously originated by B and from

 2 construct 3 which allows cack to be asynchronously originated by C .
In general, we describe a constructor function async which takes a next state function , a

machine m�, an event e and returns a new next state function async(;m� ; e) which has the additional
labelled transitions required to allow e to be asynchronously originated by m�.

SIMPLE NEXT STATE FUNCTION ==

MACHINE ! (STATE � EVENT) 7! STATE

async : SIMPLE NEXT STATE FUNCTION �MACHINE � EVENT

7! SIMPLE NEXT STATE FUNCTION

8 : SIMPLE NEXT STATE FUNCTION ;
m;m� :MACHINE ;
e : events m� �

e 2 events m ^
async(;m�; e)m =

if m = m� then m
else[

s:states m
f(s; e) 7! sg � m

_
e 62 events m ^

async(;m�; e)m = m

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 71

8.6.3 Value passing

Our calculus is based on a primitive notion of synchronised events which do not, of themselves,
admit any notion of direction in communication. However, we can build such a notion and use it to
express ideas such as value passing and function application. The basic idea is taken from the value
passing calculus of Ccs.

Consider the state machines shown in �gure 8.6, where A may start in initial state A00 or A01,
and B starts in initial state B0.

&%
'$

&%
'$

&%
'$

A00 A01

A1 &%
'$

&%
'$

&%
'$
�
�
�
�
��

A
A
A
A
AU

�
�
�
�
��

A
A
A
A
AU

send0 send1

B0

B11B10

send0 send1

Figure 8.6: Primitive value passing

Depending on the initial state of A, the possible events are send0 or send1 which lead to a �nal
state for B of B10 or B11 respectively.

We can think of events send0 and send1 as conveying state information from machine A to
machine B . This idea is the basis of the value passing calculus.

Given the following schema text:

X : PN
x : X
A0;B1 : X 7� STATE

send : X 7� EVENT

X = f0; 1g
A0 = f0 7! A00; 1 7! A01g
B1 = f0 7! B10; 1 7! B11g
send = f0 7! send0; 1 7! send1g

We will be able to show the simple example given in �gure 8.6 as in �gure 8.7. In the above schema, A0
and B1 are declared as (partial) injections because each element in their domain must map to a di�erent
state. Similarly send is declared as a (partial) injection because each element in its domain must map to
a di�erent event. Such partial injections identify, by their range, a family of states or events, and we will
refer to, for example, \the family of states A0" or \the family of states A0(x)" (where x is an arbitrary
member of the domain of A0). In future, we will not name individual states or events from such families
but will refer to them by means of the functions that map onto them (eg, we refer to A0(0) rather than
to an actual state name such as A00).

8.6.4 Mutual Exclusion with fairness

Processes A and B submit requests to enter their critical regions by adding an identity token to
a two place queue modelled by QA and QB . The requests are granted when the tokens are removed from

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 72

&%
'$
&%
'$

&%
'$
&%
'$

? ?

A0(x) B0

send(x)send(x)

A1 B1(x)

Figure 8.7: Parameterised value passing

the other end of the queue. Entry to the critical region is governed by a semaphore S . When a process
is in its critical region the state of S records this and also records the identity of the process.

The event calculus diagram for the model is given in �gure 8.8. Some event identi�ers (req(p))
represent a family of events and some state identi�ers (QA(p)) represent a family of states. Since the
domains of these injections contain two members, these families each contain two members as well. The
diagram includes basic declarations of the functions req , QA etc. In an actual formal speci�cation these
declarations would be in schema form with additional predicates de�ning, for example, the exact domains
of such functions. In this chapter such details have been omitted.

We could write out a trace of events from a the model as follows:

Event State
fA0;B0; S0;QAE ;QBEg

req(A) fA1;B0; S0;QA(A);QBEg
pass(A) fA1;B0; S0;QAE ;QB(A)g
req(B) fA1;B1; S0;QA(B);QB(A)g

grant(A) fA2;B1; S1(A);QA(B);QBEg
pass(B) fA2;B1; S1(A);QAE ;QB(B)g
rel(A) fA0;B1; S0;QAE ;QB(B)g
req(A) fA1;B1; S0;QA(A);QB(B)g

grant(B) fA1;B2; S1(B);QA(A);QBEg

This model is considered \fair" where the model show in �gure 8.3 is \without fairness". If
we were to take the same disposition as we do in section 8.6.1, ie, if we were to prefer machine A over
machine B , we would have di�erent results. When machine A enters into state A2, we are in a position
of being able to �re the req(B) event (as shown in the above trace). Thus machine B is now able to enter
into state B2 (after machine A releases the semaphore with a rel(A) event, as shown in the above trace).
Machine B is now sure to get a \turn" in its critical region before machine A gets its next trun.

8.7 A GCD algorithm, modelling parameter passing and pro-

cedure call

The greatest common divisor function may be de�ned recursively as follows:

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 73

&%
'$&%
'$&%
'$

?

?

#

"

-

&%
'$&%
'$&%
'$

?

?

#

"

-

&%
'$&%
'$#

"

$

%

�

-

&%
'$&%
'$#

"

$

%

�

- &%
'$&%
'$#

"

$

%

�

-

A0

A1

A2 B2

B1

B0
S0

S1

QAE

QA(p)

QBE

QB(p)

grant(p)

rel(p)

grant(p)

pass(p)

pass(p)

req(p)

rel(A)

req(A)

grant(A)

rel(B)

req(B)

grant(B)

Declarations:
S1;QA;QB :MACHINE 7� STATE

req; grant; rel; pass : MACHINE 7� EVENT

Figure 8.8: Mutual exclusion with fairness

gcd : N�N! N

8 x ;y : N �
gcd(x ;0) = x

gcd(x ;y) = gcd(y;x mod y)

Figure 8.9 provides a composite state machine for calculating a greatest common divisor. Ma-
chine A models a \main program" and machine B models a procedure for calculating x mod y .

To see how function application is being modelled, consider the family of transitions:

B1(u; v)
calc(w)
������!B2(w) (w = u mod v)

Each di�erent (u; v) pair is associated with a di�erent state in the family of states B1(u; v).
With each of these states we associate an event calc(w) where w = u mod v . For each w the occurrence
of event calc(w) will take machine B into state B2(w).

In drawing machine A we have included an unnamed transition from A0(y ; z) to A0(x ; y). We
think of this as an instantaneous unsynchronised transition in which nothing changes except the parameter
names. The old value of y becomes the new value of x , and the old value of z becomes the new value of
y .

8.8 Variables and Scopes

Consider machine A as given in �gure 8.9. We appear to be able to follow the state history of
variables x and y as the \program" progresses. Although this intuition is correct, is should be underpinned
with an appreciation of the underlying formalism. Formally the diagram for machine A declares the
following families of labelled transitions.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 74

&%
'$

&%
'$

&%
'$

&%
'$

A0(x ; y)

A2(y)

A0(y ; z)

A1(x) B0

B1(u; v)

B2(w)

�
return(w)

pass(u; v);

calc(w);

w = u mod v
return(z)

done(x ; 0)

v 6= 0
y 6= 0

pass(x ; y);

#
"

!

#
"

!

#
"

!

?

?

?

?

!

�

�

- -

Declarations:
A0;B1 : N�N 7� STATE

A1;A2;B2 : N 7� STATE

done; pass : N� N 7� EVENT

calc; return : N 7� EVENT

Figure 8.9: GCD algorithm, with subroutine call

A0(x ; y)
done(x ; 0)
���������!A1(x) (8.5)

A0(x ; y)
pass(x ; y)
��������!A2(y) (8.6)

A2(y)
return(z)
��������!A0(y ; z) (8.7)

Consider transitions 8.6 and 8.7 of these. The identi�ers x and y used in 8.6 are bound variables
local to this family of transitions. The y in 8.7 is a separate bound variable associated with a di�erent
expression. As with all bound variables, the choice of identi�er names is arbitrary and formally we could
replace the y in 8.7 with any identi�er name except x (which is already spoken for within the same scope).

However, the diagram notation we use limits our arbitrary choice of identi�er name in a way
that supports the intuitive understanding we have of persisting identi�er values. According to this
understanding, the y in 8.6 can be thought of as the same y as in 8.7 since in any trace they will take
the same value when an event from 8.6 is followed by an event from 8.7.

8.9 Time

We measure time in the Event Calculus in terms of clock ticks. A clock tick is a kind of
universal cosmic heartbeat, which di�ers from an event both in its universality and in being free of any
synchronisation requirements. States may be associated with a clock function, which records the number
of ticks that have occurred since that state came into existence.

We will place timing constraints on states by means of two partial functions which give the
minimum and maximum times required for given events to occur after entering a given state. These will
be partial functions because not all states and events will have timing constraints.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 75

We also introduce the set timed which is the set of all time constrained STATE �EVENT pairs
and the set timed states, which is the set of states which have any time constrained events.

minreq;maxreq : STATE � EVENT ! N

timed : STATE � EVENT

timed states : PSTATE

timed = domminreq = dommaxreq

^
timed states = fs : STATE j 9 e : EVENT � (s; e) 2 timedg

^
8 s : STATE ; e : EVENT � ((s; e) 2 timed) minreq s � maxreq s)

^

8 s : STATE ; e : EVENT � (s; e) 2 timed) : (s
e
��! s)

In the next section we will formally introduce a clock function as part of the system state.
States which are subject to timing constraint have an associated clock which records how long they have
been in existence, any new time constrained state that results from the event has its clock initialised to
zero. Note that the �nal predicate of the above schema is to disallow null transitions from being time
constrained. This is to avoid having to decide whether a null transition should reset a state clock.

Since timing constraints place additional restrictions on whether events can occur, we will hence-
forth distinguish \enabled events" (those capable of occurring if timing restraints are not considered) from
\�rable events" (those capable of occurring given that timing constraints are to be taken into considera-
tion). All �rable events are necessarily enabled, but not all enabled events need be �rable.

In de�ning what we mean by a �rable event we make use of the functions minreq and maxreq
as follows. A time constrained state s must exist for at least minreq(s; e) ticks before event e can occur.
After s has persisted for minreq(s; e) ticks the event e may occur if it is �rable, but another clock tick
(or another enabled event) may occur instead. After s has persisted for maxreq(s; e) ticks or longer, the
event e will occur before the next clock tick if it can. However, another tick may occur if e is not enabled.
Even if e is enabled it may not occur as there may be other �rable events which may occur instead.

Figure 8.10 shows a simple mutual exclusion model with time constraints on the states of
machines A and B .

Figure 8.11 shows a partial graph of the possible behaviours of the composite machine shown
in �gure 8.10. In this graph we use the notation (s; n) to show that the timed state s has persisted for
n clock ticks. Thus (A0; 2) indicates that state A0 has persisted for 2 clock ticks.

Initially, although the events get(A) and get(B) are enabled, they are not �rable because of
timing constraints. After the �rst clock tick the event get(B) becomes �rable. We now have a choice of
possible behaviours consisting of another clock tick or the event get(B).

The trace consisting of \tick ; tick", brings us to a composite state where B0's clock has reached
maxreq(B0; get(B)). Some event must now occur before the next clock tick. Two events are �rable,
get(A) and get(B). If get(B) now occurs we enter the composite state:

f(A0; 2); S1(B); (B1; 0)g

State B1 is a new member of the compound state and has its clock initialised to zero.
If, on the other hand, get(A) occurs we enter the composite state:

f(A1; 0); S1(A); (B0; 2)g

Now although B0's clock has reached maxreq(B0; get(B)) the event get(B) is not enabled. At
this point a tick can occur, or the event rel(A) can occur.

The form of the timing constraints was chosen to allow the modelling of interrupts, time outs
and to allow maximum and minimum times for complex behaviours to be calculated. We base these

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 76

&%
'$
&%
'$
#

"

!

�

-

A0

A1get(A)

rel(A)

&%
'$
&%
'$
#

"

!

�

-

S0

S1(p)get(p)

rel(p)

&%
'$
&%
'$
#

"

!

�

-

B0

B1get(B)

rel(B)

Declarations:
get ; rel :MACHINE 7� EVENT

S1 : MACHINE 7� STATE

Timing Constraints:
minreq = f((A0; get(A)); 2); ((A1; rel(A)); 0); ((B0; get(B)); 1); ((B1; rel(B)); 1)g
maxreq = f((A0; get(A)); 3); ((A1 ; rel(A)); 1); ((B0; get(B)); 2); ((B1; rel(B)); 1)g

Figure 8.10: Timing constraints example

calculations on the maximum and minimum times required for the possible event sequences that make
up the behaviour.

Consider the event sequence:

get(A); rel(A); get(B); rel(B)

We can deduce the minimum time this sequence can take by generating a trace which includes these
events and which will always prefer an event to a clock tick:

tick ; tick ; get(A); rel(A); get(B); tick ; rel(B)

and we can deduce the maximum time by generating a trace which always prefers a tick to an event:

tick ; tick ; get(A); tick ; rel(A); get(B); tick ; rel(B)

A formal speci�cation of the timing rules for the system requires a notion of current system
state, which is given in the following section.

8.10 The Dynamic model

Until now our formalisation of the Event Calculus has used a static model, in the sense that
our next state functions have held information from which all possible behaviours of an Event Calculus
model could be deduced.

We now supplement this static description with a dynamic model which has a notion of the
current system state. As part of this model we introduce schemas to describe how the current state is
updated by the occurrence of an event or a clock tick.

The \data base schema" for the dynamic model records the composite current state and the
clock value of each time constrained state within this composite state.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 77

f (A1; 0); S1(A); (B0; 2) g

f (A1; 1); S1(A); (B0; 3) g

f (A0; 2); S1(B); (B1; 0) g

f (A0; 2); S0; (B0; 2) g

f (A0; 1); S0; (B0; 1) g

f (A0; 0); S0; (B0; 0) g

f (A0; 1); S1(B); (B1; 0) g

tick

tick get(B)

get(B)get(A)

tick

?

�
�

�
�

�
��+

?

Q
Q
Q
Q
Q
QQs

Q
Q
Q
Q
Q
QQs

�
�

�
�

�
��+

Figure 8.11: Partial graph of behaviours for the machine of �gure 8.10

MachineState

machines : PMACHINE

current state : validstateset
clock : (timed states \ current state) 7! N

�rable : EVENT ! B

machine (j current state j) = machines

8 e : EVENT �
�rable(e) = enabled(current state;e)
^
8 s : current state �

(s; e) 2 timed) clock s � minreq(s;e)

In this schema we declare the set of machines to be modelled, a set of states which gives the
current state of each of these machines and a clock function to give the clock value associated with each
time constrained state. We also declare a boolean function which tells us whether a given event may
occur (is �rable) in the given system state. An event may �re if it is enabled and if all time constrained
states that will change as a result of the event have clocks that are past their minimum tick values.

We next describe the changes caused by �ring an event.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 78

FireEvent

�MachineState

e? : EVENT
result ! : f\ok"; \cannot fire"g

�rable e?
^ current state 0 = (�machines)(current state;e?)
^ clock 0 = ((current state)�C clock)[

fs : timed states j s 2 current state 0 n current state � s 7! 0g
^ result ! = \ok"

_
: �rable e?
^ current state 0 = current state

^ clock 0 = clock

^ result ! = \cannot fire"

If an event which can �re is input, the new composite state is found by applying the composite
next state function �. Any new time constrained state that results from the event has its clock initialised
to zero and the message \ok" is output.

If an event is input which cannot �re the system state does not change and the message \cannot
�re" is output.

The �nal fundamental aspect of our dynamic model is the clock tick. This increments the clock
value associated with each time constrained state in the current state space. However, there are some
circumstances in which a tick cannot occur. Suppose we have one or more state event pairs (s; e) such
that e is a �rable event and clock s � maxreq(s; e). Then an event must occur before the next clock tick.

Tick

�MachineState

result ! : f\ok"; \an event must occur before the next tick"g

current state 0 = current state

^ (: 9 e : EVENT � (�rable e ^
9 s : dom clock � clock s � maxreq(s;e)) ^

clock 0 = fs : STATE ;n : N j s 7! n 2 clock � s 7! n + 1g
^ result ! = \ok")

_
(9 e : EVENT � �rable e ^

9 s : dom clock � clock s � maxreq(s;e)
^ clock 0 = clock

^ result ! = \an event must occur before the next tick")

8.11 Combining the Event Calculus with Z schema calculus

Data base operations are typically described in Z by �rst giving a data base schema:

S0 b= [D0 j P0]

then de�ning operations on this data base with schemas having a general form:

S1 b= [�S0; D1 j P1]

The declaration D0 will give the data structures of the data base. The predicate P0 will describe
data base invariants. D1 will declare Input/Output identi�ers associated with the update. P1 will give
any restrictions and preconditions on the form of these identi�ers and will also describe how the new
system state D 0

0 is related to the previous system state D0.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 79

Suppose that in an event calculus model the state of this data base is maintained by a machine
M . We will provide an interpretation for a \Schema Transition" of the form:

M0(S0)
S1
��!M1(S

0

0
)

such that the Schema Transition describes, in terms of the event calculus, the data base update described
by the schema S1 in Z.

In formulating this interpretation we face certain di�culties. Firstly, in the Event Calculus,
parameterised events accept tuples as arguments and identify arguments by their position within the
tuple. In Z schemas, on the other hand, declarations do not have any particular order and arguments are
identi�ed by name. To handle this problem, we extend Z with an alphabetic ordering symbol � so that
if D is a declaration, �D will be the same declaration with its components written in alphabetic order
by identi�er name. Thus if X and Y are basic types and:

D is x ; z : X ; y : Y

then
�D is x : X ; y : Y ; z : X

In addition, we use �D to represent the type obtained from the declaration D by taking the
cartesian product of the types of its identi�ers in the order in which they are written, following Spivey
(1989) we use �D to represent the characteristic tuple formed by writing out the identi�ers of D . For
example

�(�D) is X � Y �X

and
�(�D) is (x ; y ; z)

These notations will allow us to construct certain tuples required in our event calculus model.
There is also a problem with respect to identi�er scope. In a parameterised labelled transition,

identi�ers are bound variables the scope of which is the labelled transition together with any qualifying
predicate. Thus

A0(x)
step(y)
������!A1(z); (y < x ^ z = x � y)

could equally well be written as:

A0(a)
step(b)
������!A1(c); (b < a ^ c = a � b)

In a schema, on the other hand, any identi�ers declared in the schema have a scope which lasts
till the end of the schema but may subsequently be reintroduced into the formal discussion by quoting the
schema name. To overcome this discrepancy we use universal schema quanti�cation. If D is a declaration
restricted by a property P and if S is a schema, the declaration part of which includes all the identi�ers
of D such that S can be expressed in the form:

S b= [D ; Ds j Ps]

then
8D j P � S

represents the schema
[Ds j (8D j P � Ps)]

In our usage of this notation, D and P will be the declarations and predicate of the schema
describing the data base update. Ds and Ps are the additional declarations and predicates required to
describe the labelled transition which will perform the data base update in the event calculus model.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 80

We need some �nal conventions to generate the declarations of the parameterised states and the
parameterised event needed in the event calculus model. We derive their names from those used in the
schema transition

M0(S0)
S1
��!M1(S

0

0
)

We take M0 and M1 as the names of our parameterised state functions. We obtain the pa-
rameterised event function name by converting the �rst character of the data base update schema S1 to
lower case. We represent this name informally as s1. This usage is informal because it does not show the
derivation of the name s1 from the name S1. For example, if the name of the data base update schema
is Book , the corresponding parameterised event name is book .

We are now ready to give the event calculus interpretation of the schema transition:

M0(S0)
S1
��!M1(S

0

0
)

where S0 is a data base description schema

S0 b= [D0 j P0]

and S1, which describes a data base update operation, has the form:

S1 b= [�S0;D1 j P1]

Our interpretation of this text at the event calculus level will be:

8D0; D
0

0; D1 � S

where

S

S1;
M : MACHINE

M0;M1 : ��D0 7! states M

s1 : ��D1 7! EVENT

M0(��D0)
s1(��D1)
��������!M1(��D

0

0)

8.12 A Distributed seat booking system

As an example of the techniques described above, we specify a simple seat booking system in
which bookings can be made from a number of di�erent nodes. We use Z schemas to describe the data
base and the update and enquiry operations to be performed upon it. We use an Event Calculus diagram
to describe the manner in which each node is able to gain access to the data base. Together with the
rules of interpretation given above, these two parts of the system description generate a formal model, in
Z, of the next state functions for the system's component state machines.

We introduce two basic types, the set of all seats and the set of names for people who may book
the seats.

[SEAT ;NAME]

The state of the data base is described in the following schema using a function from seats to
names. Seats which are not in the domain of this function are still free. There is an implicit invariant
which disallows double booking of a seat. This invariant arises from the declaration of the relationship
between seats and names as a partial function.

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 81

Booking

booked : SEAT 7! NAME

free : PSEAT

free = SEAT n dom booked

We specify an enquiry operation which will return the set of free seats.

Enquire

�Booking
free! : PSEAT

free! = free

We specify an operation to book a seat. The operation takes as inputs a seat and a name. It
has the precondition that the given seat should not be already booked and, if this is satis�ed, it adds
the new booking to the data base. There will be no need to specify what happens if the seat is already
booked, as the event calculus part of the speci�cation will render this event impossible by specifying a
data validation check.

Book

�Booking
seat? : SEAT
name? : NAME

seat? 2 free

booked 0 = booked [fseat? 7! name?g

We now associate these schema with an Event Calculus diagram that models a system in which
multiple nodes are able to share access to the data base. Figure 8.12 shows an Event Calculus diagram
which, together with the seat booking speci�cation, provides the formal speci�cation for the system.

The seat bookings data base is maintained by machine A. There are two possible operations
which can be performed on the data base, a seat booking and an enquiry. These are denoted in the Event
Calculus diagram by writing:

Book _ Enquire

This declares the two schema transitions:

A0(Booking)
Book
�����!A0(Booking

0)

and

A0(Booking)
Enquire
�������!A0(Booking

0)

There is a possible ambiguity of notation here since the expression

Book _ Enquire

could also be taken to be a single schema formed by the \schema or" of Book and Enquire. To avoid
this, we do not allow schema expressions other than schema names to be written on an event calculus
diagram.

The data base update that occurs when a seat is booked is described by the schema transition:

A0(Booking)
Book
�����!A0(Booking

0)

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 82

The meaning we give to this schema transition can be expressed as:

8D � S

Where D is the declaration part of the Book schema and S is the schema:

S

Book

A : MACHINE

A0 : (SEAT 7! NAME)�PSEAT 7! states A

book : NAME � SEAT 7! EVENT

A0(booked ; free)
book(name?; seat?)
����������������!A0(booked

0; free 0)

Machines B , C and D are three nodes which originate booking transactions. B performs its
bookings when in state B1, C in state C1 and so on. Since access to states B1, C1 and D1 is mutually
exclusive, the details of the booking operation are shown in a single machine X which runs whenever B
is in state B1 or C is in state C1 or D is in state D1. Our intention is for X to be thought of as the
common logic shared by all booking nodes, not as a separate machine invoked by a booking node when
it wishes to perform a transaction.

SEM is provided to control the mutually exclusive access to machine X , while T functions as a
watchdog timer which will cause the booking operation to be forcibly aborted if it cannot be completed
in a set time. This is achieved by placing a time constraint on the timeout event associated with state
T1 and on the timeout event associated with various states of machine X . In our speci�cation, it is
actually possible for machine X to continue with its seat booking operations when T is ready to timeout .
However, the booking operations are not allowed to take any observable time (they must all be completed
before the next clock tick).

Practical and Theoretical Aspects of Forth Software Development: The Event Calculus 83

&%
'$&%
'$

&%
'$

&%
'$

&%
'$

�

&%
'$T1

T0

B1

C1

D1

D0

C0

B0

A0(Booking) SEM0

SEM1(p)

�

�

�-

�

-

�

�

�

�

-

�

�

�

&%
'$

�

&%
'$
�

�

�-

A0(Booking 0)

? #
"

!

#
"

!

&%
'$

&%
'$&%
'$
&%
'$

&%
'$

X0

X1

X2

X3(free)

X4(free; seat)

X5(name; seat)

X6X7

reset

#
"

!

?

?

?

�

�
�
�
�
�
�
�
�
��

set

reset

_
timeout

get(B)

rel(B)

rel(C)

get(C)

get(D)

rel(D)

�

�

�

�-

�rel(p)

get(p)

Book
_

Enquire

get(p)

set

enquire(free)

in1(seat)

in2(name);
seat 2 free

book(name; seat)

timeout

timeout

abort ;
seat 62 free

timeout

timeout

�
�

�
�

?

?

?

$

%

'-

�
�
�
�
�
�
�
�
�
�
�
�
��

rel(p)

#
"

!

#
"

!

�
�

�
�

�

�

-

�
�
�
��/

$

%
�

��

$

%
66

Declarations: Time Constraints:

A0 : (SEAT 7! NAME) �PSEAT 7� states A

X4 : PSEAT � SEAT 7� states X

X5 : NAME � SEAT 7� states X minreq(T1; timeout) = 10

X3 : PSEAT 7� states X maxreq(T1; timeout) = 10

S1 :MACHINE 7� states S maxreq(X2 ; timeout) = 0

enquire : PSEAT 7� EVENT 8s : range X3 � maxreq(s ; timeout) = 0

book : NAME � SEAT 7� EVENT 8s : range X4 � maxreq(s ; timeout) = 0

get; rel :MACHINE 7� EVENT 8s : range X5 � maxreq(s ; timeout) = 0

in1 : SEAT 7� EVENT

in2 : NAME 7� EVENT

Figure 8.12: Seat booking, with mutual exclusion & time out

84

Chapter 9

Conclusions and Recommendations

In this project, our aim has been to develop software tools and formal notations that facilitate
software development in the Forth programming environment with a particular interest in \Real-Time"
and safety critical systems. In this chapter, we provide an overview of the project, linking the various
parts, giving comments on the work and making suggestions for possible further work.

9.1 Introduction

Our initial areas of investigation were:

� To provide a method of communicating between multiple Forth-based RISC systems.

� A version of the Forth++ compiler to operate with the Harris RTX{2000 stack based RISC
processor. This compiler also includes an extensive native-code optimisation technique.

� An interface between Forth and a local area network. This is to provide a multi-platform devel-
opment environment. The interface can also be used to pass messages between di�erent (possibly
remote) nodes.

� The interfaces between Forth and other high-level languages, allowing the developer the freedom
to interface with supplier propriety code. This was done in such a way that Forth's interactive
user interface is maintained and may be used to enhance the original (non interactive) system.

We have been able to address some of these problems directly. We have described these in
various sections: Communicating Novix NC4016s (Appendix A); Forth++ and the Harris RTX{2000
(Appendix B); Using Ibm's NetBios from Forth (Chapter 2); Mixed Language Interface (Chapter 3
and Appendix C).

Many aspects of our investigations proved to be dependent on a more thorough theoretical
underpinning of the Forth language. Thus our attention moved to providing such an underpinning.
This work mainly consisted of:

� We looked at how formalisms might be used to de�ne a semantic model of the Forth language.
We have provided a formal base from which the semantic meaning of a program can be derived
(Chapter 4).

� In de�ning our formal base we found a relationship between the stack based virtual machine and a
register based target processor. We investigated this relationship, developing a single pass optimi-
sation method (Chapter 5).

Practical and Theoretical Aspects of Forth Software Development: Conclusions/Recommendataions 85

� When using our formal de�nition we found that the parameter stack was a source of uncertainty.
The stack is type free, yet to formally de�ne the meaning of a routine we must know the type of
the stack items. We therefore investigated the possibility of developing a typed version of Forth,
developing a \type signature algebra" that allows us to type check the Forth parameter stack
(Chapter 6).

Having de�ned a type signature algebra we then investigated how this may be implemented and
what e�ect it may have on a program (Chapter 7).

� In order to support the multi-tasking capabilities of Forth we developed a (formal) theory of
concurrent tasks based on state machines that synchronise on events.

As this system is to be used by people unfamiliar with formal notations we have provided a graphical
representation of the theory (Chapter 8).

9.2 Networks

We investigated the Ibm NetBios system as a standard for interfacing with lans. The Net-
Bios system is designed to operate in parallel with any application. Chapter 2 describes an interface
that we have developed to exploit this ability. We have also developed several demonstration programs
to show how this system can be used to pass messages from one Ibm Pc to another.

9.3 Mixed Languages Interface

Our mixed languages interface is an interface between the Forth programming environment
and another programming language. The system described in Chapter 3 is designed to interface with
code written in the C language, however, the method is largely language independent thus allowing the
developer to interface with code written in any language. Although the system was written with the
Microsoft C compiler in mind, it was developed using Borland's Turbo C compiler. We have tested the
\portability" of this system by compiling the same code under a number of di�erent compilers.

This interface has shown how we can tap into the ever growing pool of application libraries
available for C (and other languages), thus reducing the maintenance and manufacturing costs of our
system while providing more functionality.

We have seen one implementation of the general method of integrating these language features.
We can see how the general methods can be used to extend the Forth system into areas that were out
of reach. This system would allow us to indulge in hiding of information that the Forth system has no
requirement to access in the C system, such as the oating point stack in Appendix C.

There are several ways in which this work could be advanced. It should be possible to provide
a Forth to C interface on a remote target system or a Pascal or even an Ada interface based on these
ideas. It would also be possible to apply this interface to other Forth systems with relative ease.

9.4 Formal Forth

Several aspects of our investigations appear to be dependent on a more thorough theoretical un-
derpinning of the language. Thus we moved our attentions to providing such support. Due to the nature
of the Forth abstract machine it is possible to provide a set of tools that will aid a designer/programmer
in ascertaining whether a Forth program meets its (formal) speci�cation. Chapter 4 shows some pre-
liminary investigations in to how formal descriptions can be applied to parts of the Forth programming
environment.

Practical and Theoretical Aspects of Forth Software Development: Conclusions/Recommendataions 86

9.5 Stack Optimisation

We investigated the relationship between the Forth virtual stack machine and a register based
host processor. In developing our formal support (Chapter 4) we modelled the stack as a sequence of
untyped elements. This has lead to the development of a compiler optimisation technique based on
this concept. Chapter 5 reviews the more common optimisation techniques and develop our own \stack
registers" technique. This technique keeps the top three elements of the stack in internal registers. Unlike
traditional systems that keep the items in speci�c registers, our system allocates the internal registers
dynamically. We use a relationship between the top elements of the stack and their allocated register to
produce a stack image. Using this technique it is possible to obtain 100% optimisation on certain stack
manipulation operations (such as SWAP, ROT and DROP).

By combining the most common existing techniques (inline compilation, and peep-hole optimi-
sation) with our stack registers we can provide a very powerful optimising compiler.

9.6 Type Algebra

Traditionally the Forth parameter stack has always been typeless. This allows the programmer
to \cast" data items without recourse to ine�cient and unnecessary subroutines (as in C). The majority
of Forth programmers use this ability (either directly or indirectly) in almost all applications. Yet it
carries with it the problem that the programmer must keep track of the logical type of all the items he is
using. It would be possible to fetch an integer from a variable, thinking that it was an execution-token,
causing the system to crash when this pseudo execution-token was executed.

In developing our formal support we found that we had to leave the stack as a sequence of
untyped elements. Although we could reason about the logic of a program, we need to know the stack
types to be able to check if a program is \correct" or not. For this we would need to provide some form
of typing mechanism.

Jaanus P�oial of Tartu University has developed a \Stack Type Algebra" (P�oial 1990) that
provides the capability of checking the type of stack elements. Chapter 6 presents a new type algebra
based on these ideas. The algebra includes the capability of handling items of variable type in addition
to catering for program structures and conditional execution.

Using our type algebra, it would be possible to say that a program handles its stack correctly.
It is not possible to say that the program will perform as required. By combining the type algebra with
the formal toolset, given in Chapter 4, it should be possible to formally prove that a Forth program
has a given property. In this way, we can prove that the Forth program has the same properties as the
speci�cation and is thus a true implementation of that speci�cation.

9.7 Forth Type Checker

Having developed our \type algebra" we investigated the possibility of implementing a Forth
type checker based on these ideas. Chapter 7 presents an initial speci�cation for such a program, referred
to as \Flint". The speci�cation also allows the program to check for a number of additional errors (such
as stack underow) and various software metrics in addition to its type checking rôle. Such a system will
stop the abuse of the typeless stack whilst maintaining the exibility of a type free stack.

Although we have speci�ed a possible type checker and some thought to its initial design has
been incorporated in this speci�cation, we have not, as yet, developed the system. A commercial vendor
has shown an interest in this work and may develop an implementation.

Practical and Theoretical Aspects of Forth Software Development: Conclusions/Recommendataions 87

9.8 The Event Calculus

The \Event Calculus" is a diagrammatic notation that provides an easily used means of for-
mally specifying the behaviour of concurrent systems. It can describe synchronous and asynchronous
communications, data ow modelling and function application, in addition to temporal constraints. It
also abbreviates the description of complex state changes such as data base updates via the use of formal
notations. This gives the designer a good level of control over the levels of abstraction used.

Chapter 8 introduces the Calculus in a tutorial like manner, initially introducing the notation
then building up its functionality one step at a time. The formal de�nition of the Calculus is given
alongside an informal introduction to the notation.

We have found that the diagrammatic nature of the Calculus makes it relatively easy for non
specialist to use when compared to other (event based) process algebras such as csp, ccs and lotos. As
a speci�cation produced using the Calculus has an underlying formal speci�cation, it is possible to use
this speci�cation for deriving proofs of the system begin modelled.

The Calculus is used to not only represent the state transitions in one system but also the
interaction between di�erent state machines. There is a very simple correlation between a state machine
as represented in the Calculus and a Forth task. Indeed, the Calculus appears to be an e�ective
mechanism for breaking down a complex problem into a multi-tasking implementation.

9.9 Future Directions

In this section we describe how the work presented in this document could be extended. We
have identi�ed three areas of interest that we feel worthy of further development.

9.9.1 Type Algebra

The type algebra can be developed further:

� The rules for handling variable types (rules 5{8) are probably not required, they can be derived
from the matching rules (rules 1{3) and the reduction rule (rule 4).

� The \Multiple Signature" (+) and \Alternative Type" (|) capabilities are the only way subtypes
can be expressed at current. The provision of a types hierarchy should be investigated.

� The implementation of the algebra in some form of automatic tool, such as Flint, or by incorpo-
rating the algebra into an existing compiler.

9.9.2 Formal Forth

It is our intention to provide a secure Forth programming environment. We intend to produce
such a system on a Windows based workstation, such as a Sun (Sparc station) or an Ibm Pc under
Windows. This system should be a formally speci�ed standard Forth implementation1. The formal
speci�cation, probably written in Z, will be based on the preliminary \Formal Forth" work.

We would like to include type checking facilities based on the type algebra, similar to those
prescribed for the Flint program. In time we would like to extend this system to include a formalised
variant of the stack registers optimisation technique.

1Probably the Ansi Standard, when it is released.

Practical and Theoretical Aspects of Forth Software Development: Conclusions/Recommendataions 88

9.9.3 Event Calculus

The interface between an event and a Z Schema is perhaps more complicated than is necessary.
This interface should be investigated, a new less complex one should be provided if possible.

The Event Calculus should be used to generate some example speci�cations. Taking a number
of case studies from initial speci�cation, through to �nal implementation (in Forth), complete with
corresponding proofs. This will also provide us with a less formal introduction to the Calculus.

Such examples could be used to introduce the Forth community to formal methods whilst the
Event Calculus could be used to introduce the formal methods community to the Forth language.

89

Bibliography

Aho, A. V., R. Sethi, and J. D. Ullman (1986). Compilers: Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley.

Almy, T. (1987). Compiling of Forth for performance. Journal of Forth Application and Re-
search 4 (3), 379{388.

ANSI (1991). ANS ACS X3/X3J14 Programming languages | Forth: Draft Standard (�rst ed.).
American National Standards Institute.

Astle, R. (1985). Yet another recursive decompiler. In Proc. FORML Conf., San Carlos, CA. Forth
Interest Group.

Bailey, G. V. et al. (1987, February). PolyForth ISD-4 NC4000 CPU Supplement. Manhattan Beach,
CA: FORTH Inc.

Borland International (1988). Turbo C Reference Guide. Scotts Valley, CA: Borland International.
Version 2.

Borland International Inc. (1988). Turbo C User's Guide. Scotts Valley, CA: Borland International
Inc. Version 2.

Bowen, J. P. (1987, January). The formal speci�cation of a microprocessor instruction set. Technical
Monograph PRG-60, Oxford University Computing Laboratory, Oxford.

Bradley, M. (1985). Self-understanding programs. In Proc. FORML Conf., San Carlos, CA. Forth
Interest Group.

Bradley, M. and M. Saari (1988). Sun Forth User's Guide. Mountain View, CA: Bradley Forthware.

Brinksma, E. and T. Bolognesi (1987). Introduction to the ISO speci�cation language LOTOS. Com-
puter Networks and ISDN Systems 14, 25{59.

Brodie, L. (1982). Starting Forth (second ed.). London: Prentice Hall International.

Brodie, L. (1984). Thinking Forth. London: Prentice Hall International.

Bruno, J. and T. Lassagne (1975). The generation of optimal code for stack machines. Journal of the
ACM 22 (3), 382{396.

Buege, B. (1984). A decompiler design. In Proc. FORML Conf., San Carlos, CA. Forth Interest
Group.

Carr, H. and R. R. Kessler (1986). Forth and AI? Journal of Forth Application and Research 4 (2),
177{180.

comp.lang.forth (1987{1992). Usenet newsgroup.

Practical and Theoretical Aspects of Forth Software Development: Conclusions/Recommendataions 90

Cook, R. and I. Lee (1980, 26{28 May). An extensible stack-oriented architecture for a high-level lan-
guage machine. In Proc. of the International Workshop of High-Level Language Computer Architecture,
Fort Lauderdale, FL, pp. 231{237.

Danile, P. and C. Malinowski (1987, June). Forth processor core for integrated 16-bit systems. VLSI
Systems Design 8 (7), 98{104.

Diller, A. (1990). Z: An introduction to Formal Methods. London: John Wiley & Son.

Dowling, T. (1981). Automatic code generator for Forth. In Proc. FORML Conf., San Carlos, CA.
Forth Interest Group.

Du�, C. B. (1984). NEON | extending Forth in new directions. In Proc. FORML Conf., San Carlos,
CA. Forth Interest Group.

Du�, C. B. (1986). ACTOR, a threaded object-oriented language. Journal of Forth Application and
Research 4 (2), 155{161.

Du�, C. B. and N. D. Iverson (1984). Forth meets SmallTalk. Journal of Forth Application and
Research 2 (3), 7{26.

Duncan, R. et al. (1988). The MS-DOS Encyclopedia. Redmond, WA: Microsoft Press.

Forth Interest Group (1980). Forth-79 Standard. San Carlos, CA: Forth Interest Group.

Forth Interest Group (1983). Forth-83 Standard. San Carlos, CA: Forth Interest Group.

Glass, B. (1989, January). Understanding NetBios. Byte, 301{306.

Golden, J., C. Moore, and L. Brodie (1985, March). Fast processor chip takes its instructions directly
from Forth. Electronic Design, 127{138.

Hand, T. (1988). Software metrics for Forth. In Proc. Rochester Forth Conf. on Programming
Environments, Rochester, NY, pp. 67{68. Institute of Applied Forth Research.

Hanson, D. R. (1980). Code improvement via lazy evaluation. Information Processing Letters 11 (4{5),
163{167.

Harris, K. R. (1985). Analyzing large Forth programs by using the STRUCTURE-TOOL program.
In Proc. FORML Conf., San Carlos, CA. Forth Interest Group.

Harris Semiconductor (1988a). Harris RTX-2000 Programmer's Reference Manual. Melbourne, FL:
Harris Corporation.

Harris Semiconductor (1988b). RTX 2000 Instruction Set. Melbourne, FL: Harris Corporation.

Harris Semiconductor (1988c). RTX 2000 Real Time Express Microcontroller Data Sheet. Melbourne,
FL: Harris Corporation.

Hayes, I. (Ed.) (1987). Speci�cation Case Studies. Computer Science. London: Prentice Hall Interna-
tional.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Computer Science. London: Prentice
Hall International.

Ho�mann, U. (1991). Stack checking | a debugging aid. In Proc. EuroFORML Conf., San Carlos,
CA. Forth Interest Group.

Ibm Corporation (1987, April). NetBios Application Development Guide. Ibm Corporation.

Practical and Theoretical Aspects of Forth Software Development: Conclusions/Recommendataions 91

Intel Corporation (1981, August). iAPX 86,88 User's Manual. Berkeley, CA: Intel Corporation.

Jennings, E. (1985, October). The novix NC4000 project. Computer Language 2 (10), 37{46.

Jones, T., C. Malinowski, and S. Zepp (1987, May). Standard-cell CPU toolkit crafts potent processors.
Electronic Design 35 (12), 93{101.

Kavipurapu, K. and H. Cragon (1980, 26{28 May). Quest for an `ideal' machine language. In Proc. of
the International Workshop of High-Level Language Computer Architecture, Fort Lauderdale, FL, pp.
33{39.

Kernighan, B. W. and D. M. Ritchie (1988). The C Programming Language (Second ed.). Software.
Englewood Cli�s, NJ: Prentice Hall International.

Knaggs, P. J. and W. J. Stoddart (1990). The Forth++ `C' interface. In Proc. FORML Conf., Proc.
EuroFORML Conf., San Carlos, CA. Forth Interest Group.

Knaggs, P. J. and W. J. Stoddart (1991a). The cell type. In Proc. Rochester Forth Conf. on Automated
Instruments, Rochester, NY, pp. 55{57. Institute of Applied Forth Research.

Knaggs, P. J. and W. J. Stoddart (1991b). Formal Forth. In Proc. Rochester Forth Conf. on
Automated Instruments, Rochester, NY, pp. 50{55. Institute of Applied Forth Research.

Knecht, K. (1982). Introduction to Forth. Indiana: Howard Sams & Co.

Kogge, P. M. (1982, March). An architectural trail to threaded code systems. IEEE Computer , 22{32.

Koopman, P. J. (1989). Stack Computers: The New Wave. Chichester: Ellis Horwood.

 Lukasiewicz, J. (1963). Elements of Mathematical Logic (Second ed.), Volume 31 of International Series
of Monographs in Pure and Applied Mathematics. Oxford: Pergamon Press Ltd. First published in
1929.

Lyons, G. B. (1980). Compressed Forth object code. In Proc. FORML Conf., San Carlos, CA. Forth
Interest Group.

Marriot, R. (1989a). MACH1 Hardware Reference Manual. Cranleigh, UK: Micro-Amps Ltd.

Marriot, R. (1989b). MACH2 Hardware Reference Manual. Cranleigh, UK: Micro-Amps Ltd.

McMorran, M. A. and J. E. Nicholls (1989, July). Z user manual. Technical Report TR12.274, Ibm
Hursley Park. Version 1.0.

Microsoft Corporation (1984{85). Microsoft Macro Assembler. Redmond, WA: Microsoft Corporation.
Version 4.0.

Microsoft Corporation (1984{87a). Microsoft C Language reference. Redmond, WA: Microsoft Corpo-
ration. Version 5.

Microsoft Corporation (1984{87b). Microsoft C Run-Time Library Reference. Redmond, WA: Microsoft
Corporation. Version 5.

Microsoft Corporation (1984{87c). Microsoft C Users Guide. Redmond, WA: Microsoft Corporation.
Version 5.

Microsoft Corporation (1984{87d). Mixed Language Guide. Redmond, WA: Microsoft Corporation.

Microsoft Corporation (1987). Code View and Utilities. Redmond, WA: Microsoft Corporation.

Practical and Theoretical Aspects of Forth Software Development: Conclusions/Recommendataions 92

Miller, D. (1987, April). Stack machines and compiler design. Byte 12 (4), 177{185.

Milner, R. (1989). Communication and Concurrency. Computer Science. London: Prentice Hall
International.

Minker, J. and R. G. Minker (1980). Oprimization of boolean expressions | historical developments.
A. of the History of Computing 2 (3), 227{238.

Moore, C. (1974). Forth: a new way to program a mini-computer. Astronomy & Astrophysics
Supplement 15, 497{511.

Moore, C. (1980, August). The evolution of Forth: an unusual language. Byte 5 (8), 76{92.

Moore, C. (1990a). MuP20 Microprocessor: Preliminary Speci�cations. Woodside, CA: Computer
Cowboys.

Moore, C. (1990b). ShBoom on ShBoom: A microcosm of software and hardware tools. In Proc.
Rochester Forth Conf. on Embedded Systems, Rochester, NY, pp. 21{27. Institute of Applied Forth
Research.

Morgan, C. (1990). Programming from Speci�cations. Computer Science. London: Prentice Hall
International.

Morse, S. P. (1982). The 8086/8088 Primer (Second ed.). Chichester: Hayden Book Company.

Nash, T. (1989). Using Z to describe really large system. In Proc. Z Users Meeting, pp. 150{178.
Oxford.

Nine Tiles (1987, September). Superlink Reference Manual. Cambridge, UK: Nine Tiles.

Nine Tiles (1988a, February). SimpleNet User Guide. Cambridge, UK: Nine Tiles.

Nine Tiles (1988b, June). SimpleNetBIOS Reference Guide. Cambridge, UK: Nine Tiles.

Novix (1985). Programmers' Introduction to the NC4000 Microprocessor. Cupertino, CA: Novix Inc.

Pawley, W. (1984). Using native machine code analogs of interpreted Forth's elements for high
performance. In Proc. Rochester Forth Conf. on Real Time Systems, Rochester, NY, pp. 115{120.
Institute of Applied Forth Research.

Phillips, M. (1989). CICS/ESA 3.1 experiences. In Proc. Z Users Meeting, pp. 179{185. Oxford.

P�oial, J. (1990). The algebraic speci�cation of stack e�ects for Forth programs. In Proc. FORML
Conf., Proc. EuroFORML Conf., San Carlos, CA. Forth Interest Group.

P�oial, J. (1991). Multiple stack e�ects of Forth programs. In Proc. EuroFORML Conf., San Carlos,
CA, pp. 400{406. Forth Interest Group.

Rather, E. D. (1985). Forth. Computer Programming Management .

Rather, E. D. (1987). Forth programming language. Encyclopedia of Physical Science & Technology 5.

Rather, E. D., L. Brodie, et al. (1986, November). PolyForth ISD-4 Reference Manual (�fth ed.).
Manhattan Beach, CA: FORTH Inc.

Rose, A. (1986). Design of a fast 68000-based subroutine threaded Forth with inline code & optimiser.
In Proc. Rochester Forth Conf. on Arti�cal Intelligence, Rochester, NY, pp. 285{288. Institute of
Applied Forth Research.

Practical and Theoretical Aspects of Forth Software Development: Conclusions/Recommendataions 93

Schwaderer, W. D. (1988, August). C Programmer's Guide to NetBIOS. Indianapolis: Howard W.
Sams & Company.

Scott, A. (1989). An extensible optimizer for compiling Forth. In Proc. FORML Conf., San Carlos,
CA. Forth Interest Group.

Silicon Composers (1987a, March). PC4000 Board User Manual. Palo Alto, CA: Silicon Composers.

Silicon Composers (1987b, January). SCForth User Manual (second ed.). Palo Alto, CA: Silicon
Composers.

Sjolander, S. (1987). Novix decoder. In Proc. FORML Conf., San Carlos, CA. Forth Interest Group.

Sjolander, S. et al. (1987, June). PolyForth ISD-4 Intel 8086 CPU Supplement (ninth ed.). Manhattan
Beach, CA: FORTH Inc.

Spivey, J. M. (1989). The Z Notation: A Reference Manual. Computer Science. London: Prentice Hall
International.

Spivey, J. M. (1990, September). Specifying a real-time kernel. IEEE Software, 21{28.

Stephens, C. L. and R. M. Rodriguez (1986, July). PolyForth: an electronics engineer's programming
tool. Software Engineering Journal 1, 154{158.

Stoddart, W. J. (1984). Readable and e�cient parameter access via argument record. Journal of
Forth Application and Research 3 (1), 61{82.

Stoddart, W. J. (1987). Nested error handlers. Journal of Forth Application and Research 4 (3),
443{445.

Stoddart, W. J. (1988). Speci�cation & optimisation. In Proc. EuroFORML Conf., Southampton.
MicroProcessor Engineering Ltd.

Stoddart, W. J. (1989a). Forth++ Course Notes | Part 1: An introduction to Forth. Middles-
brough, UK: Teesside Polytechnic.

Stoddart, W. J. (1989b). Forth++ System Documentation. Middlesbrough, UK: Teesside Polytechnic.

Stoddart, W. J. (1990a). Forth++ Course Notes | Part 2: Multi-tasking and Windows. Middles-
brough, UK: Teesside Polytechnic.

Stoddart, W. J. (1990b). Forth++ Course Notes | Part 3: Argument Records. Middlesbrough, UK:
Teesside Polytechnic.

Stoddart, W. J. (1990c). MACH1 Forth++ evaluation system. Middlesbrough, UK: Teesside Poly-
technic.

Stoddart, W. J. (1990d). RTX Forth++ MACH1 Speci�cs. Middlesbrough, UK: Teesside Polytechnic.

Stoddart, W. J. (1990e). RTX Forth++ Manual. Middlesbrough, UK: Teesside Polytechnic.

Stoddart, W. J. (1991a). Forth++ C/Forth Interface. Middlesbrough, UK: Teesside Polytechnic.

Stoddart, W. J. (1991b). Forth++ Extras: Graphics support and software Floating point. Middles-
brough, UK: Teesside Polytechnic.

Stoddart, W. J. and P. J. Knaggs (1990). Forth++ and the MACH1 RTX-2000 board. In Proc.
FORML Conf., Proc. EuroFORML Conf., San Carlos, CA. Forth Interest Group.

Practical and Theoretical Aspects of Forth Software Development: Conclusions/Recommendataions 94

Stoddart, W. J. and P. J. Knaggs (1991). Type inference in stack based languages. In Proc. Euro-
FORML Conf., San Carlos, CA. Forth Interest Group.

Stoddart, W. J. and P. J. Knaggs (1992, September). The Event Calculus (Formal Speci�cation of Real
Time Systems by means of Diagrams and Z Schemas). In Proc. 5th International Conf. on Putting into
practice methods and tools for information system design. University of Nantes, Institut Universitaire
de Technologie, 3 Rue du Mar�echal Jo�re, 44041 NANTES Cedex 01, France.

Surrey Medical Imaging Systems Ltd. (1988). PP2000 50 MIP parallel processor RTX-2000 Forth
development board. Guildford, UK: Surrey Medical Imaging Systems Ltd.

Tanenbaum, A. S., H. van Staveren, and J. W. Stevenson (1982). Using peephole optimization on
intermediate code. TOPLAS 4 (1), 21{36.

Wickes, W. C. (1988). RPL: A mathematical control language. In Proc. Rochester Forth Conf. on
Programming Environments, Rochester, NY, pp. 27{32. Institute of Applied Forth Research.

Woodcock, J. C. P. and M. Loomes (1988). Software Engineering Mathematics: Formal Methods
Demysti�ed. London: Pitman Publishing Ltd.

Zorland Inc. (1987). Zorland C Compiler. Zorland Inc. Version 2.

ZorTech Inc. (1989a). ZorTech C++ Compiler Compiler Reference. ZorTech Inc. Version 2.

ZorTech Inc. (1989b). ZorTech C++ Compiler Function Reference. ZorTech Inc. Version 2.

95

Appendix A

Communicating Novix NC4016s

At the start of this project we were given two Novix NC4016 boards. The intention being to
work with these boards to provide systems that could communicate over multiple CPUs. The Novix
NC4016 being a RISC based processor that is capable of executing a Forth program at great speed.

A.1 Introduction

The Novix processor is su�ciently small that it takes only 4000 gates in a programmable logic
array to implement. The chip has four di�erent data paths, it is possible to use all four within one
machine instruction, thus providing the capability of executing up to �ve Forth instructions in one
machine cycle. The majority of machine instructions are executed in one clock cycle. As a result a Novix
system operating at 10 MHz has a peek e�ective throughput of 40 MHz or 40 MIPS (Million Instructions
Per Second).

The machine instructions of the Novix are designed to execute Forth. The Forth systems
supplied with the boards were designed to compile optimised native code for the Novix system.

In this annex we describe the Novix plug in boards in detail and describe how we made the two
totally independent boards communicate with each other.

A.2 Programming

Four di�erent implementations of the Forth programming language were provided:

A.2.1 cmForth

This is an implementation by Chuck Moore. It is a basic system that has been modi�ed to
exploit the abilities of the Novix. We found the Forth itself, whilst a valid implementation, to be
lacking in features1. This is used in conjunction with the SCForth system to provide a programming
environment on the Novix board.

A.2.2 SCForth

This is a system provided by Silicon Composers to operate on the Ibm Pc. It is a rather basic
implementation of the language that had been extended to allow communication with the Novix boards.
Although the implementation is valid, it was of a rather basic system with few features.

1This is a common feature of all of Chuck's Forth systems.

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 96

To use the Novix board, the user would load the SCForth system. He would then load the
cmForth system into a 16 KBytes dual ported memory bu�er. The SCForth would then produce
an interrupt signal that instructs the Novix to start executing the cmForth system. This provides a
programming environment on the Novix system and a support environment on the Ibm Pc.

Having set the Novix executing the cmForth system, and any application the user may have
loaded, he can then exit from the SCForth system back to the Ibm Pc's operating system. Thus
leaving the Novix system to continue executing its application. This is only valid if the application does
not require any facilities from the Ibm Pc \Host" (see section A.4), as these facilities have now been
removed.

A.2.3 PolyForth

This is a fully implemented Forth development system. Two versions of the system are pro-
vided. One operated on the Ibm Pc while the other operated on the Novix. This is a full Forth
system with a full screen editor, multi-tasking and meta-compilation. The system also provided a target
compilation system for use with the Novix.

The Novix PolyForth system is also a full development system. It has multi-tasking, meta-
compilation and optimisation. As with the Silicon Composers system, the user has to load the PolyForth
system. This will then load the Novix PolyForth system into the dual ported memory and set the Novix
executing it. The Ibm Pc system provides \Host" services for the Novix system.

As with the Silicon Composers system, once the Novix system has been loaded and is executing
an application, the Ibm Pc's PolyForth system may be removed providing that the Novix application
does not require any of the \Host" facilities provided by the Ibm Pc software.

A.2.4 FATWIN

The \Forth with Argument records, Multi-Tasking and Windows" system developed by Bill
Stoddart was supplied as a Forth system that operated on the Ibm Pc. This is a full implementation
of Forth with many standard extensions and several non-standard features. Most of the extensions on
this system are provided in a manner that is compatible with the PolyForth implementation.

Whilst this system was of little interest when the project began it was latter developed into the
Forth++ system and has played a large part in this project (see chapter 1).

A.3 Single Boards

We were using the PolyForth system to develop the multi-processor communications systems.
This operated correctly with the �rst of the two boards but not with the second. The location of the
dual ported memory of the �rst board was at segment CC00 and segment D000 for the second.

All of the software in the Ibm Pc PolyForth system used the variable 'FB to hold the segment
address of the dual ported memory. The software in the Novix PolyForth system does not need to know
where this memory is located in the Ibm Pc, it simply uses the memory at 00000 though to 04000 as its
communication area.

Thus we can change the board that the PolyForth system is communicating with simply by
changing the value stored in the 'FB variable. We de�ned two new words FB1 and FB2 to set the value
of 'FB to communicate with the �rst or second board as required. As the PolyForth system only copies
the Novix PolyForth to the �rst board it is left to the user to \boot" the second board. This is done
by selecting the second board and typing the Forth word BOOT:

FB2 BOOT

Whilst this method of booting the second board works, we want to hide such information from
the user. Thus, we redeveloped the code for FB1, FB2, BOOT (and PLUG) so that when the user selected a

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 97

board that had not been initialised, the system would automatically copy the PolyForth system to the
new board and set it operating. The code that created the words FB1 and FB2 was developed in such a
way that the user can add new boards to the system at will. The code is given in section A.7.1.

A.4 Host Services

When the Forth word PLUG is executed the PolyForth system connects with the current Novix
board (indicated by the value of 'FB). The OPERATOR task is set up to provide \Host Services" to the Novix
system. The purpose of this is to provide the Novix system with a method of accessing the Ibm Pc's
hardware. The PolyForth system provides access to the Keyboard, Video, Disks, Communication Ports
and Printer.

The mechanism by which these services are provided is that of a \Mailbox". One mailbox is
used for each device that the system is supporting. The mailboxes are stored in the dual ported memory,
thus being accessible by both the Novix and the Ibm Pc. The mailboxes are of di�ering length depending
on the device that they are controlling and the functions it can perform.

The Novix will place a value in the �rst word of the mailbox indicating the function it would like
to perform. The Ibm Pc will take this value and use it as an o�set into a table of functions2 executing
the required function. The Ibm Pc will place the value �1 in the mailbox to indicate to the Novix that
it has completed the requested function. Whilst this is not a very good Forth based approach to the
problem, it is the way the original PolyForth system operated. In our work, we have tried not to alter
the way in which the Novix communicates with the Host in any way thus we have inherited this message
passing mechanism.

For the Novix to display a message on the Ibm Pc's screen, it would place the required text into
the bu�er area of the mailbox. It will then set a function code in the mailbox and wait for the Ibm Pc
to acknowledge the function code. The Ibm Pc will interpret the function code and display the text in
the bu�er. Having completed the function it will send a message back to the Novix in the form of an
acknowledgment. Having received the acknowledgment the Novix will now continue with its processing.

The system is designed in this way in order to provide multi-tasking on the Novix board. Let
us say, for example, that two independent tasks on the Novix would like to access the same device. The
�rst task would place its function code into the mailbox (and additional data if required). This task
would then continue processing. However, the second task would see that the mailbox has a function
pending (ie, that the function request code is not �1) and so will wait (in a multi-tasking manner) until
the Ibm Pc acknowledges the �rst task request by placing �1 in the request code area. The second task
can now continue and place its request in the mailbox.

The PolyForth \Host" system has a task constantly monitoring the function request value for
each mailbox, with the exception of the Keyboard and Video mailboxes. When the Ibm Pc is PLUGed into
the Novix board the OPERATOR task monitors the Keyboard and Video mailboxes. One of the functions
associated with this mailbox is \return to host". On receiving this request the OPERATOR reverts back to
its normal action of interpreting keyboard commands for the Ibm Pc system.

A.5 Parallel Boards

The system described in sections A.3 and A.4 provides us with a mechanism that allows two (or
more) separate Novix boards operating in parallel. There are still two problems to be solved:

1. Only one Novix board may have access to the \Host" facilities at any given time. This access is
controlled by the operator connecting with the relevant board (via the use of FB1 and FB2).

2. Although the boards may be operating in parallel, they are also operating in isolation. A method
that allows the boards to communicate with each other is to be found.

2This means that the function numbers must be even.

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 98

We see two methods of solving the �rst of these problems. Namely the provision of \Host"
services to all of the Novix systems available.

A.5.1 First Method

The monitoring of the mailbox function request area is performed by the word AWAIT. The code
for AWAIT was redeveloped to scan for both Novix systems (see section A.7.2). Thus when the monitoring
task executed the AWAIT word it would automatically monitor both of the Novix boards. When AWAIT

returned the system would be ready to perform the required action for the correct board.

This system failed to operate to our expectations for various reasons:

1. The system is based around the ability of altering the value of the 'FB variable to indicate the
relevant Novix board. This is a global variable, thus, changing its value, will e�ect other tasks. As
the system is multi-tasking, it is not possible to change such a variable and expect its value to be
the same when next used.

This is a common problem when dealing with multi-tasking systems. By changing the 'FB variable
from a global to a user variable, each task will have its own copy of the variable. Hence it can take
on di�erent values for each di�erent task.

2. The code (as given in section A.7.2) is explicitly written for use on two boards and is not capable
of expansion (without rewriting it each time a new board is added).

By changing MAKE.FB we could make a cyclic list out of the possible Novix boards present. We are
then able to rewrite AWAIT to scan through the cyclic list of possible boards. Hence, when the user
creates another board, it would automatically be added to the list of boards. Thus, the monitoring
software will automatically start servicing it.

This has a problem in that the host will start servicing the board before it has been initialised. By
moving the code that links the new board into this cyclic list to be the last function performed by
the FBOOT word we stop the host from servicing the new board until after it has been initialised.
The code for this system is given in section A.7.3.

3. The DISKER task provides access to the disk system, via use of the disk mailbox. This is a short
mailbox holding two data �elds, the value #BLK indicating which disk block the Novix requires and
the value of BUFFER indicating whereabouts in the Ibm Pc's memory the block has been located.
To read the contents of the disk block, the Novix issues keyboard input requests. The keyboard
server will take its input from the indicated block rather than the keyboard.

Whilst this is (in principle) the correct way of performing this function3 it has two problems:

(a) It relies on the interaction of two servicing tasks, the DISKER task (monitoring the disk mail-
box) and the OPERATOR task (monitoring the keyboard/video mailbox). It is possible for the
OPERATOR to be processing another board's request at the same time the DISKER request is
made. However, the OPERATOR will see the ag indicating it should take input data from the
disk block and will therefore pass the disk block information to the wrong Novix system.

(b) It means that the Novix system can only process disk information when the keyboard/video
mailbox server is in operation. Ie, the board in question is connected.

If we were to \tighten up" the synchronisation between the two tasks, so that the OPERATOR task
were to know for which Novix board the disk request applies, it would stop the �rst problem.
However, the Novix system would still only be able to access the disk services when it has been
connected too.

3Based on the description of disk accessing given in the Forth'83 standard.

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 99

4. In order to communicate with the boards the user must connect with one of them (using the FB1

or FB2 words). This will set the OPERATOR task servicing the keyboard/video mailbox. However, as
the keyboard is being treated as a normal device two (or more) Novix system may make a request
to obtain input from the keyboard. One of the systems will be honoured, however, the user will
have no knowledge as to which system he is communicating. This relates to the previous problem
of the disk accessing being directed through the keyboard/video mailbox.

By providing an additional task TERM that will service most of the keyboard/video mailbox requests,
we can provide all of the boards with access to the video. We can also provide access to the disk
system by synchronising the TERM task with the disk accessing of the DISKER task. This will leave
the OPERATOR task to be used in the conventional manner.

The TERM task will be able to process requests for text from the keyboard under two circumstances:

(a) The Novix board making the request has previously made a request of the DISKER task (ie, is
inputting a disk block).

(b) The OPERATOR task had been directed to operate as the keyboard for the Novix system making
the request.

In this manner, we can provide a mechanism that allows any of the Novix boards to access the
Ibm Pc's disk drives. The user will be able to PLUG into any of the boards and know that all
keyboard communication is being directed to that board.

This solution still has a problem. When the user is connected to one of the boards, it will stop any
form of disk accessing. The Novix will issue a \Read data from the keyboard" request. While the
TERM task is processing this request it will not be able to process any other requests. The solution to
this problem is to totally redevelop the functions provided by the disk mailbox such that it operates
independently of the keyboard mailbox.

A.5.2 Second Method

The second method of provided this facility is to totally redevelop the servicing code. By
providing a single task that scanned and processed all of the mailboxes connected with the one board it
is possible to add as many tasks as required, each servicing its own Novix system.

Whilst this method is conceptually simpler than the �rst, it means a complete redevelopment of
the existing code, the converging of several tasks into one. Although this made the problems of handling
the disk and keyboard into simple problems.

A.5.3 Comparison

Both methods provided the environment that is required. The �rst method is more di�cult to
understand and leads to complicated problems that were solved by redeveloping part of the server code
(and the Novix code). It is simpler to use, as it is more automatic than the second method.

The second method is simpler to understand but requires a great deal more e�ort to totally
redevelop the servicing code, although no Novix code has to be changed. The coding has to take into
account the fact that several tasks may be requesting access to the same resource simultaneously whilst,
in the �rst method, this is taken care of automatically (by the logical splitting of tasks).

The second method is more open to adaptability than the �rst. With the second method it is
possible to use two entirely di�erent Forth systems on the Novix boards, each having its own servicing
task on the Ibm Pc. For instance, it is possible to run PolyForth on the �rst Novix board and cmForth
on the second (provided that a servicing task has been developed to operate with the cmForth system).
The �rst method is simply not easily extendible.

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 100

A.6 Communicating Systems

Section A.5 describes a system that allows any number of Novix boards to operate in parallel,
accessing host services as required. The user may communicate with one board at a time from the
keyboard. Although the boards may be operating in parallel, they are still unable to communicate with
anything except for the host. In this section, we extend this system to allow di�erent Novix boards to
communicate with each other without the intervention of the user.

A.6.1 Hardware Restrictions

The main problem in providing such a facility is the Hardware Restrictions inherent in the
design of the board. The boards provide a 16 KBytes area of dual ported memory that is mapped into
the Ibm Pc's main memory area thus allowing the Ibm Pc to access the �rst 16 KBytes of the Novix
memory. The exact location of this memory can be con�gured (in the Ibm Pc) by setting jump switches
on the Novix board. No two Novix boards may have a con�guration using the same memory area on the
Ibm Pc for their dual ported memory as this would cause a \bus error", in addition to being a logical
error. No two dual ported memory areas may overlap as this will also cause a \bus error".

Thus, for each Novix board in use this 16 KBytes of dual ported memory are physically separated
(by being located on the Novix boards) and must be logically separated (by being mapped into di�erent
areas of the Ibm Pc's memory).

A.6.2 Communication

Given that the hardware design inhibits any form of inter-processor communication (except with
the Ibm Pc), a software solution is to be found.

As the Ibm Pc is the only system that is able to communicate with all of the boards present, we
can consider a facility to allow communication between boards to be an additional host service. As we
have already modi�ed the way in which the host services are provided we are able to extend the system
to include inter-processor communication (between Novixs). For further information on host services see
section A.4, and section A.5 for more information on their modi�cation to allow multiple board operation.

Mailbox

We have provided an additional mailbox for \Inter-Processor Communication" (IPC). The mailbox has
the format given in �gure A.1.

Function Processor

Code Number
� � � Data Area � � �

Figure A.1: Format of the IPC Mailbox

Where Function code is the function request code area, Processor number is a special data area
used by all of the available functions and the Data area is where the IPC message is placed. The system
we provide does not make any checks on the data area. The message may be in any format, as required
by the application.

Identi�cation

A system of identifying processors is required. There are basically three di�erent ways of identifying a
processor:

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 101

1. The segment address of its dual ported memory area can be given. This would seem the most useful
option as it requires less code and is quick in operation. However, it means that each existing Novix
will need to know the con�guration of the other Novix's dual ported memory.

2. The address of its data area (in the cyclic list). This still has the problem that every Novix will have
to have knowledge about every other Novix. This will also add a level of indirection to the system,
thus slowing it down. In addition these addresses are likely to change as new code is developed.

3. An index value that indicates the Novix's position in the system. Thus the �rst system initialised is
referred to as processor 1, the second as processor 2 etc. This requires two levels of indirection with
extra processing by the Ibm Pc, however, it also means that the Novix systems needs no knowledge
of the other Novix systems. Indeed it will also allow on-line recon�guration of the Novix systems
available.

It would also be possible for an application to send messages using this IPC system between the
Ibm Pc and the Novixs using this method. In such a case the Ibm Pc's identi�cation number is
given to be 0.

Functions

There are three functions associated with the IPC system:

Who am I? This function places the processor identi�cation number of the calling Novix system in the
processor number area of the mailbox, thus providing the method for a Novix to discover what its
identi�cation number is.

The number of Novix systems currently accessible to the host is placed in the data area of the
mailbox. This is provided so that application software may con�gure itself to use all of the Novix
systems available to the best advantage.

Wait will wait for a message being directed to this board. A task will be set up on the Novix system
that waits for a message from another board. On receiving a message, it will interpret it and act
on it as required. The processor identi�cation number of the sending processor is placed in the
processor number while the message is placed in the data area.

Message sends a message to another system. The message to be sent is placed in the data area while
the processor identi�cation number of the destination processor is in the processor number area.

The exact form of the message is application dependent. You may transfer data, in any form, from
one processor to another (including the host). The host's message passing service simply copies the
data area of the message bu�er from one mailbox to the other. The target system must be waiting
for a message otherwise an error code is returned (a �1 is placed in the \processor number" area).

As a board can discover its own processor number (via the Who am I? IPC function), it would be
possible for a multi-tasking application to post a message to another task on the same board by
placing its own processor id into the processor number �eld.

A.7 Code

In this section we present the code that was developed during this project. The code is presented
in the order it was written with the multi-board boot code �rst followed by the �rst attempt at providing
host services for multiple boards.

This code is explicitly designed for use with two boards. The redeveloped (true multi-board)
version of the code is given in the �nal section.

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 102

A.7.1 Multiple Boards \Boot" code

We start by de�ning the new version of the two words PLUG and BOOT. Finally, we de�ne the
word MAKE.FB. We tell the system that a new board is present by de�ning a new data area for it with
the MAKE.FB word. This de�nes a new word and de�nes a data area for the new board.

When the new word is executed (the board is referenced) for the �rst time it will load the
PolyForth system into the board's dual port memory and start the board executing. MAKE.FB con�gures
the new word's data area to execute the FBOOT word to perform this task.

The last action of the FBOOT word is to alter the action of the new word, so that next time it is
executed, the system will execute the FPLUG word, thus given access to the given board.

We de�ne a new version of PLUG that takes the address of the boards data area o� the stack
and ignores it.

: FPLUG (addr -- ; Version of PLUG invoked by MAKE.FB words)

DROP \ Ignore data area address

PLUG \ Plug into the given board

;

Next, we de�ne a new version of BOOT that takes the address of the boards data area and boots
the given board. It will then change the value of the board's data area such that the next time the word
is executed it will invoke the FPLUG word rather than the FBOOT word.

: FBOOT (addr -- ; Version of BOOT invoked by MAKE.FB words)

BOOT \ Copy PolyFORTH to the Novix board

['] FPLUG \ Get the execution token for FPLUG

! \ Alter the data area of the MAKE.FB word

PLUG \ Connect with the Novix board

;

Now we can de�ne the MAKE.FB word. This is a creating word, it will create a named reference
for the board, the dual ported memory of which is located at the given segment address.

When the new word is executed the system will connect with the given board, booting it, if the
board has not been accessed before.

: MAKE.FB (seg -- ; Create Novix Board access word with

dual ported memory at seg)

CREATE \ Create the new word

, \ Its body has the segment address of the dual

\ port memory for the given board

['] FBOOT , \ And the execution token of the FBOOT word

DOES> (addr --) \ When executed the new word will:

DUP @ \ Fetch the dual port memory segment address

'FB ! \ Store it in 'FB

2+ \ Move to the execution token

DUP \ Get the execution token

@EXECUTE \ Execute the word (FBOOT or FPLUG)

;

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 103

It should be noted that when the @EXECUTE is executed the 'FB variable has been set to the correct value
for the board in question. The word FBOOT is passed the address of the execution token in the word's
data area, this is so that it may change it. However, when changed the word FPLUG is also passed this
value, so we must ignore it.

Finally we make the two boards known to the system.

HEX \ input in Hexadecimal

CC00 MAKE.FB FB1 \ Define FB1 to connect with the first board,

\ with its dual ported memory at segment CC00

D000 MAKE.FB FB2 \ Define FB2 to connect to the second board,

\ with its dual ported memory at segment D000

DECIMAL \ revert input back to Decimal

A.7.2 First attempt at providing Host Services

This section provides the code for the �rst attempt at providing host services for both boards
(as described in section A.5.1). We start by de�ning two constants to hold the values of the dual ported
memory for the di�erent boards:

HEX \ Numbers are in Hexadecimal

CC00 CONSTANT 'FB1 \ The first board is at segment address CC00

D000 CONSTANT 'FB2 \ The second is at D000

DECIMAL \ Back to Decimal input

Now we rede�ne the AWAIT function such that it looks in the mailbox for both Novix boards
alternatively. Examining the mailbox of the �rst board. If that is �1 (no function) it will then look at
the mailbox of the second board, etc. When the value is not �1 there is a function pending. The AWAIT

word will return with the function number. This matches the behaviour of the original AWAIT except for
searching both mailboxes.

: AWAIT (mailbox -- n ; Watch mailbox for function from Novix boards)

-1 \ Put a dummy function code on the stack

BEGIN

DROP \ Drop the old function code (-1)

PAUSE \ Allow other tasks to run

'FB @ 'FB1 = \ Switch boards:

IF 'FB2 \ If 'FB is pointing to the first board

ELSE 'FB1 \ then set it to the second board

THEN 'FB ! \ else set it to the first board

DUP

request FB@ DUP \ Get mailbox function code

-1 = NOT \ True if function code <> -1

UNTIL \ Repeat loop until the function code <> -1

NIP \ Remove mailbox address from the stack

;

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 104

A.7.3 Revised Boot and Host code

The code given in sections A.7.1 and A.7.2 is described in section A.5.1. This section also gives
the problems encountered with this code and the modi�cations needed to overcome these problems. In
this section we present this modi�ed code.

In this code, we provide a cyclic list of Novix board data areas thus allowing us to access as
many boards as are available. Otherwise, the code is similar to the code already presented.

In order to handle the cyclic list, we de�ne a global variable ('FB.HEAD) to hold the address of
the �rst entry in this list. We initially store a 0 in this variable, thus a 0 value is used to indicate an
empty list. In order to overcome the problem of inde�nite postponement, we also de�ne the 'FB.LIST

user variable4 (see the description of the AWAIT word on page 106 for more information).

VARIABLE 'FB.HEAD 0 'FB.HEAD !

USER* 'FB.LIST 0 'FB.LIST !

We now rede�ne the 'FB variable, changing it from a global variable into a user variable, thus
each task will have its own copy of the variable.

USER* 'FB

We now provide the FPLUG word that will take the Novix board's data area and ignore it (for
the same reason as given in A.7.1).

: FPLUG (addr -- ; Version of PLUG invoked by MAKE.FB words)

DROP \ Ignore data area address

PLUG \ Plug into the given board

;

We now de�ne the FBOOT word to work in much the same way as given in section A.7.1. However,
having booted the board, it will then add the board to the cyclic list of available boards. If the list is
empty it will make this entry link to itself thereby making a cyclic list.

: FBOOT (addr -- ; Version of BOOT invoked by MAKE.FB words)

BOOT \ Copy PolyFORTH to the Novix board

DUP 4+ \ Move to the execution token area

['] FPLUG ! \ Alter to the FPLUG execution token

\ Add this data area to the cyclic list

'FB.HEAD @ 0= \ Is the list empty ?

IF DUP ! \ Yes => Make this the last entry of the list

ELSE DUP \ No => Copy head of list to this entry

'FB.HEAD @ !

THEN 'FB.HEAD ! \ Make this entry the head of the list

PLUG \ Connect with the Novix board

;

We now de�ne the MAKE.FB de�ning word. The data area holds space for the link required by
the cyclic list, the segment address of the dual ported memory and the execution token of the word to
execute (FBOOT or FPLUG) when the new word is executed.

4It should be noted that the word USER* is a special version of the standard word USER which automatically allocates
the next free word in the user area.

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 105

: MAKE.FB (seg -- ; Create Novix Board access word with

dual ported memory at seg)

CREATE \ Create the new word

0 , \ Its body has an initial link value of 0

, \ The segment address of the dual port memory

['] FBOOT , \ And the execution token of FBOOT

DOES> (addr --) \ When executed the new word executes:

DUP 2+ DUP \ Move to the segment address value

@ 'FB ! \ Store the boards segment address in 'FB

2+ \ Move to the execution token

@EXECUTE \ Execute the word (FBOOT or FPLUG)

;

It should be noted that when the @EXECUTE is executed the 'FB variable has been set to the correct value
for the board in question. The memory address of the start of the data area is placed on the stack before
invoking the word FBOOT or FPLUG.

We should now make the two boards known to the system.

HEX \ input in Hexadecimal

CC00 MAKE.FB FB1 \ Define FB1 to connect with the first board,

\ with its dual ported memory at segment CC00

D000 MAKE.FB FB2 \ Define FB2 to connect to the second board,

\ with its dual ported memory at segment D000

DECIMAL \ revert input back to Decimal

We are now in a position to rede�ne the AWAIT word. This version of the word will look at the
mailbox associated with each of the boards in the cyclic list. If the function code is �1, it will move
on to the next board in the list, otherwise it returns the function code, setting up the 'FB variable for
communication with the board in question.

In order to overcome the problem of inde�nite postponement, the word will always start scanning
from the entry indicate by the 'FB.LIST variable. When a function code is found, a pointer to the next
entry in the cyclic list is placed in the 'FB.LIST variable. The word will start scanning from the next
entry in the list when next invoked thus removing the possibility of inde�nite postponement.

When the word is �rst invoked, the value of 'FB.LIST will be 0 (uninitialised). The word will
then check the global head of list ('FB.HEAD). If this is also found to be empty, the word will loop until
such time as the list has an entry.

: AWAIT (mailbox -- n ; Watch mailbox for a request from Novix boards)

'FB.LIST @ \ Look at the local start of list

BEGIN

0= \ Loop if the list is empty

WHILE

PAUSE \ Allow other tasks to run

'FB.HEAD @ \ Get the global head of list

REPEAT \ Repeat until the list is NOT empty

BEGIN

PAUSE \ Allow other tasks to run

DUP 2+ @ \ Get this board's dual port segment address

'FB ! \ Set the current board segment address

Practical and Theoretical Aspects of Forth Software Development: Communicating Novix NC4016s 106

OVER

request FB@ DUP \ Get the mailbox request

-1 =

WHILE \ While the mailbox request is -1 (no request)

DROP @ \ Move on to the next board in the list

REPEAT

SWAP @ \ Get the next list entry

'FB.LIST ! \ Save for scanning next time

NIP \ Drop the mailbox offset

;

107

Appendix B

FORTH++ and the MACH1

The MACH1 is an RTX-2000 board that can plug into an Ibm Pc or compatible and com-
municate with the Ibm Pc via a 16 KBytes of dual port RAM. It has up to 128 KBytes of fast static
RAM. The board's layout is very simple due to the use of a con�gurable gate array to hold all of the bus
interface logic.

The Forth++ development system is a segmented memory model Forth which runs on the
Ibm Pc and on the Harris RTX-2000 family of Forth processors. It is a Forth-83 system that includes
support for argument records, multi-tasking and windows.

This annex describes some features of the Forth++ system and the multiprocessor program-
ming environment it provides for an Ibm Pc with one or more MACH1 boards.

B.1 The MACH1

The MACH1 board, from MicroAMPS Ltd., is fully plug-compatible with an Ibm Pc expansion
slot and is designed to be compatible with existing Forth development systems. Unlike most other
Forth boards, it also dedicates about 13 square inches of board area (approximately 1

3
of its full size) to

a hardware prototyping area. An uncommitted backplane connector permits use of a DB-25 or similar
connector to communicate with any other special equipment.

The Harris RTX-2001A is the board's standard microprocessor operating at 8 or 10 MHz and
can be combined with 32{128 KBytes of 1- or 0-wait-state SRAM (Static Random-Access Memory). The
minimum 8 MHz RTX can deliver bursts of 50 MIPS and sustained operations at 12 MIPS; the faster
10 MHz chip can deliver sustained rates of 15 MIPS.

Existing Forth cross-compilers using the Forth-83 and PolyForth standards are fully com-
patible with the MACH1 board. The Forth++ system was designed to be used with the board and is
now distributed with the board as part of a development package (Marriot 1989a).

B.2 The MACH2

The MACH2 board has two RTX chips operating in parallel. The board is too large to be
mounted inside the Ibm Pc. The Forth++ system is used to program this board and is distributed
with the boards (Marriot 1989b).

B.3 Forth++

The developers of the MACH1 sent us a prototype board asking us to develop a version of the
FATWIN Forth system to operate on the new board. They had heard of our interest in the RTX-2000

Practical and Theoretical Aspects of Forth Software Development: Forth++ and the MACH1 108

: SURFA (length width height -- area)

{ const length const width const height }

length width * length height * width height * + + 2* ;

Figure B.1: A de�nition of SURFA using argument records.

(see Chapter 1) and had previous experience with the FATWIN system, thus the invitation.
We redeveloped the FATWIN system for the RTX environment, in addition to extending the

Ibm Pc based version (Stoddart 1990c; Stoddart 1990d; Stoddart 1990e), which became known as
Forth++.

B.3.1 Memory Organisation

Both Forth implementations are based on a segmented memory model with native code, names,
strings and stacks being held outside of the 64 KBytes ofForth-83 Standard Forthmemory. In addition,
the name and string segments of the RTX Forth system may optionally be held in the Ibm Pc's memory
so that on a 128 KByte memory MACH1 board there will be 64 KBytes for RTX code and 64 KBytes of
Standard Forth memory space. The HERE (the next free dictionary location) on a fully featured RTX
Forth++ system con�gured in this way is at 0700 (under 2 KBytes of kernel data space).

This organisation allows large applications to be developed especially since the Ibm Pc Forth++
system has a C library interface, graphics and oating point libraries (see Chapter 3).

B.3.2 Multi-Tasking and Windows

Both systems support classical Forth multi-tasking using a round robin scheduler with non pre-
emptive task switching. We call the concurrent objects in our system \actors", but they are functionally
similar to PolyForth's terminal tasks with some additional abilities for passing activation messages.

Due to the RTX using hardware stacks, it can present e�ciency problems when switching
between tasks. We have found techniques which ameliorate this situation. For example, delayed tasks
are handled by the system timer interrupt routine. A system with one executing task and any number
of delayed or idle tasks will have virtually no multi-tasking overhead. In addition, interrupt routines
can be written in high level Forth with all the support provided by the argument records mechanism
described in the next section. The e�cient RTX multi-tasking involves more use of interrupt routines
and an absolute avoidance of such indulgences as polling.

The Ibm Pc version of Forth++ supports text windows which can be connected to actors.
These windows may be opened, overlayed or closed, but in any of these states they can be written to,
with a minimum of processor overhead. It is a relatively simple matter to allocate windows to MACH1
actors. This just needs a new target-to-host mailbox to be de�ned, an actor on the Ibm Pc to read
mailbox characters and display them in the window and the vectoring of the MACH1 actors EMIT routine
to output to the new mailbox.

B.3.3 Argument Records

The distinguishing feature of Forth++ is its use of a frame stack for local variables. The
mechanism is similar to that used by compiled languages such as Pascal or C. The basic idea is similar
to the LOCALS wordset currently being proposed for the Ansi-Forth Standard (ANSI 1991) and is much
more e�cient and expressive.

As an example of a problem which is slightly awkward to code in classical Forth, consider the
word SURFA which calculates the surface area of a cuboid from its length width and height. A de�nition
of SURFA using argument records is given in �gure B.1. An example test for this de�nition in given in

Practical and Theoretical Aspects of Forth Software Development: Forth++ and the MACH1 109

�gure B.2.

10 20 30 SURFA . Enter 2200 ok

Figure B.2: Testing the SURFA de�nition.

In this de�nition, the immediate word { commences the description of an argument list. The
immediate de�ning word const is used to create the temporary dictionary entries length, width and
height. The argument list is terminated by the immediate word }, will compile the code required to
move three values from the Forth stack to the frame stack.

When compilation reaches the end of the de�nition, the words length, width and height are
removed from the dictionary and a run time operator is compiled that will remove the current frame from
the frame stack and perform the exit function.

As a second example, consider a word MAX-OF that �nds the maximum value in a table. Fig-
ure B.3 shows a possible de�nition for MAX-OF using argument records.

: MAX-OF (n.addr n -- max)

{ var table const n -32768 num max }

n 0 DO

val table val max >

IF val table to max THEN

++ table

LOOP

val max

;

Figure B.3: A de�nition of MAX-OF using argument records

The argument record sets up three entries, a pointer to pass through the table of integers
(table), a local constant to hold the current value (n) and a local variable to hold the current maximum
value (max). The local variable is initialised to �32768, the minimum signed 16 bit value.

Within the de�nition, the argument record parameters are preceded by a \method selection
pre�x". The phrase `val table' returns the value of the current table item and the phrase `++ table'
will increment the address referenced by table in order to access the next item in the table. The phrase
`to max' will store the top of the stack in the local variable max.

: $MATCH (c.addr1 c.addr2 count -- flag)

{ cvar $1 cvar $2 const n }

TRUE (if the strings match this will be left)

n 0 DO

val $1 val $2 <>

IF NOT (switch flag to false) LEAVE THEN

++ $1 ++ $2

LOOP ;

Figure B.4: A string match function, using argument records.

As a �nal example, �gure B.4 shows a string matching routine. It is a simple task to add

Practical and Theoretical Aspects of Forth Software Development: Forth++ and the MACH1 110

new parameter types. The \method selection" mechanism is based on object oriented programming
techniques1, thus the same selectors can be used in a polymorphic manner. It is just as simple to add
new method selectors as it is to add new parameter types. See (Stoddart 1984) or (Stoddart 1990b) for
a full description of argument records.

B.4 The Multi-Processor Forth Interpreter

B.4.1 The Users View

The user interface is designed so that a user can choose to interact with any of the processors
in the system. It is also possible to de�ne a single command to load and run an application that involves
all of the processors.

We refer to the Ibm Pc as the host system, since it provides terminal and mass storage facilities
for the MACH1 which is referred to as the target system.

Interaction

At cold start, the user is interacting with the host system. The command T switches interaction
to the MACH1. Where there is more than one MACH1 board, the commands T0, T1 etc. are provided
to connect to a particular processor.

To switch interaction from the target board back to the host, the user should press the Alt-H
key. This will cause the host to exit from the terminal emulation program invoked by T. The target
system has a special command `HOST' this causes the host to exit from the terminal emulation program
and continue execution from that point. The target also continues its own execution thus allowing a user
to invoke tasks on both target and host systems.

We can show how this works with an example. For this system the screen is split into two
windows. Interaction with the target takes place in the one window, whilst interaction with the host
takes place in the other (larger) window. Whilst connected to the host system a user could enter:

T 1000 2000 DUMP

This connects the user to the target by running the terminal emulation utility T. The rest of the command
line is left to be interpreted when the T utility terminates.

Whilst connected to the target the user could enter:

HOST 0 1000 DUMP

The HOST command causes the host system to terminate its execution of T and to continue execution by
interpreting \1000 2000 DUMP". Meanwhile, the target continues execution by interpreting the text that
follows HOST, the \0 1000 DUMP". The target's output goes to the �rst window, the host's to the second,
both host and target will be dumping 1000 bytes of memory to their respective windows.

Messaging

Sometimes it is useful for a word de�ned on the host to post a message to be interpreted by the
target. This is achieved with the word T" which has a similar syntax to ." but which queues the following
text string in a bu�er which will be interpreted by the target when the T command is next invoked.

Suppose we have an application that requires screen 10 to be loaded on both host and target
systems, screens 11 to 20 to be loaded by the host and screens 21 to 30 by the target. Now suppose that
the target system is to be set running by the command GO-TARGET (assumed to be de�ned a part of the

1The \method selector" can be viewed as a message, while the \parameter type" is the object class. Thus the phrase
`cvar $1' can be interpreted as instigating an instance $1 of class cvar, while the phrase `val $1' can be seen as passing
the message val to the object $1.

Practical and Theoretical Aspects of Forth Software Development: Forth++ and the MACH1 111

target application code) and the host is to be set running with GO-HOST (again assumed to be de�ned as
part of the hosts application code). This can be achieved with the following de�nition:

: RUN

10 LOAD \ Load common screen

11 20 THRU \ Load Host specific application code

T" \ Target will do:

10 LOAD \ Load common screen

21 30 THRU \ Load Target specific application code

HOST \ Release host

GO-TARGET" \ Start target application code

T \ Connect with target

EVAL" GO-HOST" \ Start Host application code

;

Note that EVAL" GO-HOST" simply interprets the text string GO-HOST. This is necessary because
we are assuming that the word GO-HOST is not de�ned when RUN is compiled, but is de�ned by the host
speci�c application code on screen 11 to 20.

Viewing code

A �nal important feature of the system is the implementation of a VIEW facility for both Ibm Pc
and RTX systems. The phrase VIEW <word> is used to enter the editor in browse mode at the screen
where <word> is de�ned. The editor also has a search facility to locate text strings. Together with VIEW

this provides a powerful method of reviewing the de�nition and subsequent usage of Forth words.

B.4.2 Implementation Notes

Communication between the Ibm Pc and MACH1 systems takes place via the dual port memory
area. This contains the MACH1 's disc bu�ers and a number of shared data structures.

The MACH1 sees its keyboard and screen as two \mailboxes" in the dual ported memory.
Each mailbox consists of two cells, one of which holds the character in transit, the other providing
synchronisation by holding a \mailbox character available" ag. The MACH1 side of the dual-port
interface is therefore very simple, all the sophistication is on the Ibm Pc side.

The Ibm Pc word T actually performs several tasks. It will accept keyboard input and places
the key codes into a transfer queue. It also monitors the output mailbox displaying any characters that
appear there. Finally, it monitors a dual port data structure through which the MACH1 posts requests
for occasional services. These include the \save current system" request, the request to VIEW the source
code screen for a given de�nition and the \continue execution" request posted by the HOST word.

A second host actor transfers characters from the character queue to the keyboard mailbox.
Another monitors and acts on mass storage requests and another monitors and acts on requests to access
the Ibm Pc's memory2.

The system, as described, operates in whichever window OPERATOR is currently associated. How-
ever, it is easy to provide a dual window system in which interaction with the target takes place in a
separate window. To achieve this, another mailbox with associated access functions must be set up with
another host actor to display the output of the new mailbox in the target window. Having provided this
the MACH1 's EMIT routine should then be vectored to put the outgoing characters into the new mailbox.

B.5 Code Optimisation

The RTX-2000 family provides many single op-codes which can replace sequences of two or more
standard Forth operations (Harris Semiconductor 1988a). For investigation purposes, we implemented

2This is needed when the name and string segments are being stored in the Ibm Pc's memory rather than on the board.

Practical and Theoretical Aspects of Forth Software Development: Forth++ and the MACH1 112

an optimiser which can recognise every \many to one" code reduction sequence, including those which
include high level calls and those de�ned by the user. It uses a tree traversal algorithm and users can
add new branches to the tree to include new op-code sequences for optimisation. The algorithm will also
change past optimisations if it �nds a better one ahead.

This optimiser is supplied but is not built into the system because the implementation algorithm
requires more space that is likely to be save by optimisation! We have found that a fairly simple optimiser
can achieve 90% of the code space and execution time saved by the full optimiser. This mini-optimiser is
permanently loaded and operational by default. Since installing the mini-optimiser, we have not observed
any performance degradation.

Theoretically however, an optimiser can interfere with the correct compilation of Forth-83
Standard code. For example consider the phrase:

COMPILE SWAP -

If optimisation is on, the sequence `SWAP -' will be optimised and compiled into the single op-code SWAP-.
When the compiled code is executed, this is the op-code that will be compiled by COMPILE and not the
required SWAP. To deal with this, the commands OPT and -OPT are provided to turn optimisation on and
o�.

One of the most e�ective RTX optimisations is the ability to perform a return instruction in
parallel with the last op-code of the routine. Most RTX instructions have a return bit, which is set to
cause a return to be executed in parallel with the instruction. Normally the compiler checks whether the
last instruction in a de�nition is an RTX op-code primitive and sets the return bit of the op-code if it is.
As an example of where this optimisation is inappropriate consider the de�nition:

: ABS DUP 0< IF NEGATE THEN ;

When compilation reaches the semi-colon, the most recently compiled operation is NEGATE. However, we
need to compile a return op-code rather than set the return bit in the negate op-code. To achieve this
the de�nition of THEN includes an operation which informs the system that the last op-code compiled can
not be optimised. This is transparent to the user but must be considered if the user is de�ning his own
control structure words3.

B.6 Graphics

The Ibm Pc version of Forth++ can support extensive graphics libraries via its interface to C
graphics library routines (see Chapter 3). In many applications, the speed of the RTX can be a great help
in calculating the form of graphics images. For example, the problem of transforming one graphics image
into another by producing a series of intermediate images. Another common example is the generation
of fractal images.

These applications produce some interesting problems in terms of debugging application code
as the screen that is normally used to observe the progress of our Forth application by means of stack
prints, etc., is now given over to display purposes. Forth++ helps with this in two ways:

1. It supports a utility which splits the display screen into two areas, one of which is used by the
Forth interpreter while the other is used for graphics display.

2. It supports the ability to output text to closed windows. Suppose we are using the dual window
system described in section B.4.1, in which the target and host interaction take place in separate
windows. On entering graphics mode the windows are closed but console output is not vectored to
the graphics screen. Therefore, any console output produced during graphics mode will be displayed
on exit and the windows are opened again4.

3Due to the way one constructs new control structures in Ansi-Forth this is no longer a consideration.
4Due to hardware limitations the contents of the screen are destroyed when entering or exiting graphics mode, thus you

must close windows before entering graphics mode and reopen them on exit.

Practical and Theoretical Aspects of Forth Software Development: Forth++ and the MACH1 113

With the use of network communications via an add on module (see Chapter 2) it is possible to
provide a programming environment, where all text output from the \Graphics" system is passed over the
network to a \text" system. Thus allowing the programmer to have the normal programming environment
on one system whilst displaying the graphics screen on the other system. We have programmed such a
system.

114

Appendix C

Mixed Languages Interface: Source

Code

This annex is intended to supplement the \Mixed Languages Interface" chapter (chapter 3). It
gives source listings and some technical comments for the mixed languages interface, as we are currently
using it.

The source is split into a number of di�erent �les. These �les are:

CFLOAD.ASM program that loads the Forth++ system and then the C overlay if it is required.

MAKELOAD.BAT batch �le that makes the Forth loader program.

CFINIT.C contains the C initialisation code.

CFORTH.H header �le containing macro de�nitions (push, pop, etc.).

CFORTH1.C an example \user �le". This is the only �le that the user should edit. We have provided an
example module that provides a oating point maths extension, using the C oating point code.

CFASM.ASM holds the code for initialising the C and Forth context switching area, in addition to the
code for performing the context switch.

MAKEOVLS.BAT, MAKEOVLL.BAT make the overlay library, incorporating the user supplied code. Using
the Small or Large memory models.

C.1 Loader

This is the Microsoft assembler source code for a program that loads in the Forth++ system.
It �rst returns as much memory as possible to Ms-Dos. It will then proceed to load in the Forth++
segments. For a given segment, the name of the �le to load is obtained by taking the name of the loader
program and replacing the .COM by the required segment extensions:

.CDE Code segment

.FOR Forth data segment

.STR String segment

.NAM Name segment

The stack segment is grabbed from memory, but is not initialised by this loader program.
After loading in the Forth system it will then load in a C module. Notice that this module is

the last to be loaded. The loader will either take the C �le from the same directory as the Forth++

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 115

overlays or from a given location. It will then pass control to the C module to allow it to initialise before
executing any of the Forth code. If no C module is required the loader will simply execute the Forth
directly.

PAGE 60,132 ; Set page size, lines x cols

TITLE 'CForth++ Loader'

comment ;

This file is assembled to produce the Forth system loader. The batch

file MAKELOAD.BAT contains the commands to assemble the file and convert

the object code to .COM format. The file produced by MAKELOAD.BAT is

called FLOADER.TPT. This file is a loader template which is patched and

renamed by the Forth SAVE-SYS routine to produce a customised loader for

a particular Forth system. The distribution files FPP.COM and CFORTH.COM

are examples of Forth loaders produced in this way.

When a loader such as CFORTH.COM is invoked as a DOS command, it detects

its own name (in this case "CFORTH") and loads in the Forth segments

(CFORTH.CDE, CFORTH.FOR, CFORTH.NAM and CFORTH.STR). It also reserves

space for the Forth stack segment. The segment address of each segment

is stored at reserved locations in the Forth code segment.

If a C overlay file was specified at SAVE-SYS time, its name will have

been patched into the loader file and it will be loaded and executed as

an overlay. This overlay will be passed the PSP of the loader, within

which will be the address of the Forth code segment (in an unused FCB

address in the PSP).

If no C overlay file is specified control will be passed directly to the

Forth code segment.

;===

CFL_TEXT segment byte public 'CODE'

assume cs:CFL_TEXT,ds:CFL_TEXT,es:CFL_TEXT,ss:CFL_TEXT

ORG 100h

entry PROC NEAR

; To enable loader locations to remain at a fixed position known to the

; Forth system, the code starts with a jump.

jmp start

; To allow a common location to place a debug breakpoint this far return

; instruction is placed at location 103 of the loader. Hence when the

; Forth word TRAP is invoked, this far return is executed, thus allowing

; us to use a monitor program to assist in the debugging of our Forth

; code.

dbg PROC FAR

ret

dbg ENDP

; ==

; Data Area

; ==

;

; Now we have the data area for the loader. The default values held in

; this section will be altered to suit by Forth's SAVE-SYS command.

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 116

; Forth Segment sizes (in paragraphs)

csize: dw 1000h ; Code segment

fsize: dw 1000h ; Forth segment

nsize: dw 1000h ; Name segment

$size: dw 800h ; String segment

ssize: dw 1000h ; Stack segment

; Far address to execute Forth

eoff: dw 3 ; Offset within Code segment to start execution

eseg: dw ? ; Will be set when Forth code seg is loaded.

; C Base program name.

;

; This is a counted ASCIIZ sting, with the count including the

; terminating zero

;

; If the count is 0 then no C Base program is loaded and control is

; passed directly to the Forth++ Code segment

;

; If the count is -1 then the ASCIIZ string holds the Complete path name

; Otherwise the file name is added to the end of the default load path

;

cname db 0

db 7fh DUP(?)

; The following equates give addresses in the Forth code segment which

; are used to hold the addresses of other segments.

fsptr equ 06h ; Forth segment pointer

nsptr equ 08h ; Names

$sptr equ 0ah ; Strings

ssptr equ 0ch ; Stack

lsptr equ 0eh ; Loader segment pointer

; Address for Forth to call to re-enter C system. This is initialised

; to point to an error handler by SAVE-SYS and is reset by the C overlay

; initialisation.

roptr equ 10h ; Offset

rsptr equ 12h ; Segment

; Forth++ Segment file name extensions

cfile db "CDE",0 ; Code

ffile db "FOR",0 ; Forth

nfile db "NAM",0 ; Name

$file db "STR",0 ; String

; ===

; Loader Program

; ===

;

; Initialise all segments to point to the same (code) segment

start: cld

mov ax,cs

mov ds,ax

mov es,ax

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 117

mov ss,ax

mov sp,OFFSET stack

; As we use features of DOS that only appeared (documented) in DOS 3.0

; we must make sure that the user is not running an earlier DOS system.

mov bp,OFFSET msg_1 ; Point to the error message

mov ah,30h

int 21h

cmp al,3

jae resize

call abort

; Resize memory back down so that we can grab it

resize: mov bx,64h ; keep enough memory to work in

mov ah,4ah

int 21h ; resize allocated memory

jnc cont

call mem_err

; Find the current program name. This is stored at the end of the

; environment table. The environment table can be a maximum of 32K.

; Each entry is terminated with a 00 byte and the table is terminated

; with a second 00 byte (after an entry terminating 00 byte). The name

; of the currently executing program is then stored as an ASCIIZ string

; 2 bytes on from the end of the environment table.

cont: mov bp,OFFSET msg_3

mov ax,cs:2ch ; Get segment addr of Env. table

mov es,ax

mov cx,8000h ; Max size of Env. table

xor ax,ax

mov di,ax ; Set DI to start of Env. table

scan: or cx,cx

jnz scn1

call abort ; If table too big, Env. error

scn1: repnz scasb ; Find end of entry

scasb ; Is it end of table

jnz scan

add di,2 ; Move DI to start of program name

; The currently executing program name is the full path name of this

; program (eg, C:\FORTH\CFORTH\CFORTH.COM). We copy this name into an

; internal buffer so that we can change it as required.

; This name can be no longer than 7F bytes.

push ds

push es

mov ax,ds

mov es,ax

pop ds

mov si,di

mov di,OFFSET fname

mov cx,7fh

rep movsb

pop ds

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 118

; Scan through the currently executing program name (in the buffer) to

; find the . used in the '.COM' at the end of the name. This is so that

; we can simply replace the 'COM' part of the filename with the relevant

; extension required for a given overlay.

;

; It is possible to have a '.' in a directory name, hence we must find

; the end of the filename (a maximum of 7fh characters) and scan back

; towards the start to find the correct '.'. The location of the

; character after the '.' is stored in the variable fdot for later use

; by the loadseg subroutine.

mov cl,80h ; Max for file name + 1

mov al,0 ; Terminating character

mov di,OFFSET fname

repnz scasb

je sdot

call abort ; Filename to long (Env. error)

sdot: mov cl,6 ; Max characters back + 1

mov al,'.'

std

repnz scasb

cld

je gdot

call abort ; Can't find the '.' (Env. error)

gdot: add di,2

mov WORD PTR fdot,di

; Load the Forth++ system.

; The Forth++ system is made up of a set of overlay files. The

; following code simply loads in each of the overlays in turn. The

; overlay name is made up by taking the currently executing path name

; and replacing the .COM with the relevant extension for the given

; overlay. The subroutine loadseg preforms most of the work required

; for this function.

; Code segment

; The code overlay is the first to be loaded as this has to be

; patched with the segment addresses of the remaining overlays.

; The segment address of the code overlay is placed in ES and

; the offset to patch is placed in BP. When we load the Code

; overlay we place the address of eseg in ES:BP so we can

; patch in the segment required for the inter-segment jump into

; the Forth system.

mov bx,WORD PTR csize ; Size of Segment

mov bp,OFFSET eseg ; Offset in ES patch seg addr.

mov dx,OFFSET cfile ; Segment extension

call loadseg ; Load the Forth segment

mov ax,WORD PTR eseg ; Recover overlay segment addr

mov es,ax ; Set as ES

; Set rsptr field of Forth code segment to contain the segment

; address of the code overlay. If a C overlay file is loaded

; this setting will be overwritten by the C code to the segment

; address of the C code. This is to assist Forth to set up an

; error trap for spurious C calls (ie, those made when no C

; overlay is present).

mov es:[rsptr],ax

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 119

; Forth segment

mov bx,WORD PTR fsize

mov bp,fsptr

mov dx,OFFSET ffile

call loadseg

; Name segment

mov bx,WORD PTR nsize

mov bp,nsptr

mov dx,OFFSET nfile

call loadseg

; String segment

mov bx,WORD PTR $size

mov bp,$sptr

mov dx,OFFSET $file

call loadseg

; Stack segment

; Because the stack segment does not require to be initialised

; we do not have an overlay for it. Here we simply obtain the

; memory required for the stack and patch the code overlay

; directly.

mov bx,WORD PTR ssize

mov ah,48h

int 21h

jnc ssseg

call mem_err

ssseg: mov es:[ssptr],ax

; Load segment

; The lsptr field of the code overlay is set to the segment

; address of the currently execution program. The setup chain

; of the Forth system will then be able to inspect (and execute)

; any text given on the command line after the program name.

mov ax,cs

mov es:[lsptr],ax

; Do we need to load in the C base program?

;

; The byte at cname is the count for an ASCIIZ string holding the name

; of the C overlay file. If this count is 0 (zero) then the C overlay

; is not required, so execution is passed directly to the Forth Code

; overlay.

mov ax,ds

mov es,ax

mov si,OFFSET cname ; Count byte of C overlay name

mov al,[si]

inc si

cmp al,0 ; Is the count zero ?

jne covl ; No => Load the C overlay

jmp DWORD PTR eoff ; Yes => jump to Forth code seg

; The byte at cname did not contain a 0 (zero), hence we must load

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 120

; (and execute) the C overlay file. If the count byte is -1 the

; following 7fh bytes give the full pathname of the C overlay file.

; However, if the count is not -1, it should be the length of the

; filename (including the terminating zero) for the C overlay. This

; filename will be appended to the current load path, used to load in

; the other overlays.

covl: cmp al,-1

je covl_2

; The count byte indicates the number of characters to add to

; the end of the current load pathname. In order to do this we

; must first find the first character of the file name at the

; end of the most recently loaded overlay (string). This can be

; done by scanning backwards from the . used to indicate the

; overlay type, looking for the \ used to indicate a directory

; name. If the \ is not found within the maximum number of

; characters allowed for a file name (8 + 3) then an Environment

; error is indicated.

mov bp,OFFSET msg_3

push ax

; Find the '\'

mov cx,11

mov di,WORD PTR fdot

mov al,'\'

std

repne scasb

cld

je covl_1

call abort

covl_1: add di,2

; Copy the given filename onto the end of the path

pop cx

mov ch,0

rep movsb

; Load and execute the overlay

jmp cload

; The count byte was -1, so copy the full pathname into the

; internal buffer.

covl_2: mov di,OFFSET fname

mov cx,7fh

rep movsb

cload: ; Load and execute the C overlay file. The name of the file to

; load is in the internal name buffer fname .

; Initialise all seven loadblock fields to 0000h

mov di,OFFSET loadblock

push di

mov cl,7

xor ax,ax

rep stosw

pop di

; Initialise the new loadblock so that the C overlay inherits

; the eseg:eoff values as the first four bytes of its default

; FCB. This is to pass the segment:offset address of the Forth

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 121

; code overlays entry address to the C system.

mov ax,cs

mov [di+8],ax ; Default FCB segment

mov [di+4],ax ; Command line

mov ax,OFFSET eoff

mov [di+6],ax ; Default FCB holding eseg:eoff

mov ax,80h

mov [di+2],ax ; Command line tail

; Invoke the program (C Overlay file). Note the execution is

; passed to the C overlay file to allow the C initialisation

; code to be executed before the Forth system is invoked. The

; overlay file will invoke the Forth system via the execution

; address passed to it in the default FCB.

mov dx,OFFSET fname

mov bx,di

mov ax,4b00h ; Load and execute an overlay

int 21h

mov bx,cs

mov ss,bx

mov sp,OFFSET stack

jnc execok

call load_err

execok: mov al,0

jmp exit

;===========

; Subroutine: Loadseg -> Load a given Forth++ Segment overlay

;===========

;

; On entry:

; bx => No of paragraphs required for overlay

; es:bp => addr to place segment addr of new overlay

; dx => overlay name

; fdot => addr of first char after the '.' in load file name

loadseg LABEL NEAR

push es

; Grab the memory

mov ah,48h

int 21h

jnc rdseg

call mem_err

; We got it and its seg addr is in ax - patch it into the

; code overlay.

rdseg: mov es:[bp],ax

; set es:bx to the parameter block "loadblock"

push cs

pop es

mov bx,OFFSET loadblock

; Initialise the load parameter block.

mov [bx],ax ; destination segment

mov WORD PTR 2[bx],0 ; load Offset is set to zero

; Copy the overlay extension name over the .COM

mov si,dx

mov di,WORD PTR fdot

mov cl,3

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 122

rep movsb

; set ds:dx to file name

mov dx,OFFSET fname

; load file as overlay

mov ax,4b03h

int 21h

jnc rdok

call load_err

rdok: pop es

ret

;===========

; Subroutine: Mem_err -> Display a memory error condition and abort

;===========

;

mem_err:mov bp,OFFSET msg_2

;===========

; Subroutine: Abort -> Display an error condition and abort

;===========

;

; BP => Error message to display

; AX => Error code

abort: push bp

push ax

mov bp,OFFSET msg_A ; <CR><LF>Forth++ Load error <

call display

pop dx

pop bp

pop ax

sub ax,3

call hexw ; Address of error

mov al,'/'

call char ; Separator

mov ax,dx

call hexw ; Error code (AX at time of error)

call display ; Error text (for user) '> xxx'

mov bp,OFFSET msg_B ; !<CR><LF><BELL>

call display

mov al,1

;===========

; Subroutine: Exit - Exit back to Dos

;===========

exit: mov ah,4ch ; Exit back to Dos

int 21h

jmp exit

;===========

; Subroutine: Load_err -> Display a load error condition and abort

;===========

;

; fseg:foff => Address of ASCIIZ string holding file name

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 123

load_err:

mov dx,ax

mov bp,OFFSET msg_A ; <CR><LF>Forth++ Load error <

call display

pop ax

sub ax,3

call hexw ; Execution address

mov al,':' ; Separator char

call char

mov ax,dx ; Error code

call hexw

mov bp,OFFSET msg_5 ; > Can't find:

cmp dx,2

je le_1

cmp dx,3

je le_1

mov bp,OFFSET msg_6 ; > access denied when loading <CR><LF>

cmp dx,5

je le_1

mov bp,OFFSET msg_2 ; > Out of memory

cmp dx,8

je le_2

mov bp,OFFSET msg_3 ; > Environment error

cmp dx,0ah

je le_2

mov bp,OFFSET msg_4 ; > in

le_1: call display ; Display error message

mov bp,OFFSET fname ; Display File name (or err msg)

le_2: call display

mov bp,OFFSET msg_B ; !<CR><LF><BELL>

call display

mov al,1

jmp exit

;===========

; Subroutine: Display -> Display a ASCIIZ string

;===========

;

; BP => addr of ASCIIZ string to be displayed

;

display:cld

push si

mov si,bp

d1: lodsb

cmp al,0

je dr

call char

jmp d1

dr: pop si

ret

;===========

; Subroutine: HexW -> Display a hex word

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 124

;===========

;

; AX => Word to be displayed as four hex digits

;

hexw: push ax

mov al,ah

call hexb

pop ax

;===========

; Subroutine: HexB -> Display a hex byte

;===========

;

; AL => Byte to be displayed as two hex digits

;

hexb: push ax

mov cl,4 ;*** This is required as MASM (4.0) is

shr al,cl ;*** not able to accept: shr al,4

call hexc

pop ax

;===========

; Subroutine: HexC -> Display a hex character

;===========

;

; AL => Bits 0..3 to be displayed as a single hex digit

;

hexc: and al,0fh

add al,'0'

cmp al,'9'+1

jc char

add al,'A'-('9'+1)

;===========

; Subroutine: Char -> Display a character on the video

;===========

;

; On entry:

; AL => Character to be displayed

;

char: push dx

mov dl,al

mov ah,2

int 21h

pop dx

ret

;==

; DATA AREA

;==

; Error messages

msg_A: db 13,10,'Forth++ Load error <',0

msg_B: db ' !',13,10,7,0

; The DOS must be version 3.0 or above

msg_1: db '> Dos 3.0 (or above) required',0

; An out of memory error occurs when a request for memory is denied.

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 125

msg_2: db '> Out of Memory',0

; An Environment error occurs when:

; 1. The environment table is longer than its maximum 32K.

; 2. The currently executing file name is longer than its max (7F bytes)

; 3. The . can not be found at the end of the file name

; 4. The \ can not be found at the start of the file name

; 5. Returned as an error from the load (4B) function

msg_3: db '> Environment Error',0

; When the load (or load and execute) overlay function (4B) is invoked,

; it may return an error code. The following error messages will be

; displayed dependent on the error code returned.

;

; Out of memory - Insufficient memory to load the overlay

; Environment error - Bad Environment

; Can't find - File does not exist

; Access denied - File access is denied

; in - Any other error condition

msg_4: db '> in ',0

msg_5: db '> Can''t find: ',0

msg_6: db '> Access denied when loading',13,10,0

;===

; Variable Space

;===

; The offset address of the name that is attempting to be loaded (in

; case of an Can't find error) is stored in an internal variable.

foff dw ?

; The loadblock used to load the overlays (and C base program)

loadblock dw 7 DUP(?)

; A buffer to store the currently executing program name. The name in

; this buffer will be manipulated to form the correct path name for the

; overlay files that make up the CForth++ system.

fdot dw ?

fname db 80h DUP(?)

; Some stack area.

stack dw 160 DUP(?)

entry ENDP

CFL_TEXT ends

end entry

In order to generate the loader program, you should invoke the
MAKELOAD batch �le provided. This will produce the (.COM format) loader template FLOADER.TPT. This
is a simple data �le, loaded into memory (from 0100h) of the current load segment.

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 126

As this program is less than 2 Kbytes in length, it means that we can store it as a couple of
Forth blocks directly. When we need to alter the variables we can simply copy the Forth blocks to the
required �le name to produce the new program loader.

C.2 Making the loader

The MAKELOAD batch �le will process the CFLOAD.ASM �le into the system loader (FLOADER.TPT).
The �le is assembled, linked and then converted into the `.COM' format before being renamed FLOADER.TPT

as required by Forth++'s SAVE-SYS command.

rem *** Assemble the loader ***

masm cfload , , , ,

rem *** Link it into a .EXE file ***

link cfload ;

rem *** Now convert it into a .BIN ***

exe2bin cfload.exe

rem *** Copy it to the FLOADER.TPT template ***

copy cfload.bin floader.tpt

rem *** Delete unwanted files ***

del CFLOAD.LST

del CFLOAD.OBJ

del CFLOAD.CRF

del CFLOAD.EXE

del CFLOAD.BIN

C.3 Overlay initialisation

This is the initial C code that is executed immediately after the loader program has loaded in
the C module. It simply calls the assembler code routine FINIT to initialise the Forth interface and
then enters into a tight loop passing control to the Forth system. When control is returned to the C
system, it pops an integer value o� from the Forth stack and uses it as an index into a jump table of C
routines. The C routine is then executed and control is passed back to the Forth system.

#include "cforth.h"

/**/

/*** ***/

/*** CFORTH1.C Definitions ***/

/*** ***/

/*** The following initialised structures are defined by the ***/

/*** customer code, in the file CFORTH1.C ***/

/*** ***/

/*** ***/

/*

* jmptbl[] is a table that contains functions that can be invoked from

* the Forth system. A function number is used as an index into the

* table.

*/

extern TBL jmptbl[];

/*

* The function startup() is invoked after initialisation of the C

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 127

* system to allow the customer code to perform any initialisation that

* it may require.

*/

extern void startup(void);

/*** ***/

/*** End of CFORTH.C definitions ***/

/*** ***/

/**/

/**/

/*** ***/

/*** Forth Interface ***/

/*** ***/

/*** The following code is for the C Main function. This code is ***/

/*** the interface between C system and the Forth system. It ***/

/*** also provides the calling mechanism to allow the Forth system ***/

/*** to invoke the C functions given in the jump table. The ***/

/*** external functions (FINIT and FORTH) can be found in the MASM ***/

/*** assembly source code file CFASM.ASM. ***/

/*** ***/

/*** This code should NOT be altered unless you are sure about it! ***/

/*** ***/

/**/

/*

* Declare the external values. The function FINIT() is called to

* initialise the Forth++ system. It will initialise the context

* switching area. The function FORTH() will save the C environment,

* build the Forth environment and then continue execution of the Forth

* system. When the Forth system wants to invoke a C function it will

* return to FORTH(). FORTH() will then swap execution environments and

* return execution to the C system. The Forth Stack Pointer is updated

* on entry/exit of the Forth system.

*/

/*

* Under Zortech C++ we must declare these functions as having C type

* linking. Hence the next two lines would be:

*

* extern "C" { void FINIT(void); }

* extern "C" { void FORTH(void); }

*

* Note: This is only required for C++, the Zortech C compiler will

* error when given this code.

*/

extern void far FINIT(void);

extern void far FORTH(void);

main(void)

{

/* Invoke the Forth initialisation code */

FINIT();

/* Invoke customer C start up code */

startup();

/* Execute Forth and interpret any C calls */

{

unsigned int i;

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 128

while(1)

{

FORTH();

i = POP(int);

jmptbl[i].function();

}

}

}

C.4 Context Switching

This is the code that actually does the hard work of transferring control between the Forth
and C systems. This �le is designed as a C module and is to be linked in with the users C code.

There are two assembler code routines in this �le. _FINIT is called by the C initialisation code
to initialise the C to Forth data required by the _FORTH code. This will set up the initial Forth entry
address (including Code segment) as passed to it from the loader program (via the program segment
pre�x).

The _FORTH subroutine is called by the C when it wants to transfer control from the C system
to the Forth system. This subroutine simply stores the state of the C system (on the C stack) and then
recovers the state of the Forth system1. It will then pass control to the Forth system.

When the Forth system wants to pass control back to the C system, it will make an Inter-
segment call to the label freturn. This code will save the current Forth status, recover the C status
(from the C stack) and return to the calling C code.

PAGE 66,132

TITLE C to FORTH Interface (P.J. Knaggs 08/08/90)

; This code is included as part of the C overlay. It contains the MASM

; assembler code for the actual C to Forth interface. Two routines are

; provided to be linked with the C system, they are _FINIT and _FORTH.

CFASM_TEXT segment byte public 'CODE'

assume cs:CFASM_TEXT,ds:_DATA

SUBTTL Initialise the Forth++ System

PUBLIC _FINIT

_FINIT PROC far

; void far _FINIT(void)

;

; Initialise the C data area for the context switching. Also initialise

; the remaining part of the Forth system for the C overlay.

; The following equates give address in the Forth Code segment

; used to hold the address of the code to invoke the C

roptr equ 10h ; Return Offset pointer

rsptr equ 12h ; Return Segment pointer

ssptr equ 0ch ; Stack Segment pointer

; Save the C environment (on the C stack)

pushf

push si

push di

1From variables, as the C system needs access to the Forth stack structure for argument handling

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 129

push bp

push es

push ds

mov ax,_DATA

mov ds,ax

; Set Direction Flag to increment

cld

; Extract the execution seg & offset of the Forth system from locations

; 5ch and 5eh of the PSP, where they will have been deposited by the

; Forth system loader. Locations 5c and 5e are safe to use as they are

; in redundant PSP locations (actually a file control block).

mov ah,62h

int 21h

mov es,bx

; Store the execution seg & offset in eseg & eoff

mov ax,WORD PTR es:5ch ; Execution offset

mov eoff,ax

mov ax,WORD PTR es:5eh ; Execution (Code) Segment

mov eseg,ax

mov es,ax

; We can now place the C execution vector into the Forth code segment.

; This is the address of the code that the Forth system is to execute

; when it transfers control back to the C system. This is set to an

; error reporter by SAVE-SYS, but we now replace it to point to freturn.

mov ax,SEG freturn

mov es:[rsptr],ax ; Return Seg Pointer

mov ax,OFFSET freturn

mov es:[roptr],ax ; Return Offset Ptr

; We must set up the Forth stack (segment and offset) so that on the

; first execution of _FORTH the stack is at a sensible location.

; Thereafter it will be looked after by the Forth system.

mov ax,es:[ssptr]

mov WORD PTR sseg,ax

mov ax,4

mov WORD PTR soff,ax

; Recover the C environment from the stack

pop ds

pop es

pop bp

pop di

pop si

popf

ret

_FINIT ENDP

SUBTTL Switch context between C and Forth and back again

PUBLIC _FORTH

_FORTH PROC far

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 130

; void FORTH(void) - Enter into the forth system

;

; When the C system has completed its task it will transfer control

; to the Forth system by executing this code. When the Forth system

; wants to re-enter the C system it will invoke the code at freturn.

;

; The C environment is stored on the C stack before the SS:SP address

; is stored in cseg:coff. All registers not saved can be discarded or

; recovered by the program.

; Save the C environment

pushf

push si

push di

push bp

push es

push ds

; Save the C stack

mov ax,_DATA

mov ds,ax

mov cseg,ss

mov coff,sp

; Read Forth stack (from __FSP)

mov sp,soff

mov ss,sseg

; Set up for re-entry to Forth with a far return

push eseg

push eoff

; Restore Forth environment

; Forth++ uses the following registers:

; SI, BP, BX, CS, DS, SS and SP

;

; We are changing the stack pointer so we must generate

; the new values of SS:SP (stored in the variable __FSP)

;

; The CS:IP value will be set when we return to the forth

; system. The values are stored in eseg:eoff

;

; The remaining registers are stored in an environment buffer.

; They can not be stored on the Forth stack as the C code

; requires access to the Forth stack for argument passing, thus

; these values are stored in this environment buffer fbuf .

mov si,fiip

mov bp,frsp

mov bx,fubp

mov ds,fds

; Clear direction flag (required in Forth inner interpreter)

cld

; Execute the Forth system

ret

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 131

; Forth to C

;

; When Forth is ready to invoke a C function, it will make an inter-

; segment call to the following code. This will return to the C code

; which will, in turn, pop an integer value from the Forth stack and

; execute the corresponding jump table entry.

freturn label near

; Set the data segment to access interface data

push ds

mov ax,_DATA

mov ds,ax

; Save Forth's environment

; As the C system requires access to the Forth stack (to get the

; function request number and any other argument passing) we

; can't store the systems state on the Forth stack. Thus we

; must store it in the "environment buffer", fbuf .

mov fiip,si

mov frsp,bp

mov fubp,bx

pop fds

; Save Forth's re-entry point

pop eoff

pop eseg

; Save Forth's stack (in __FSP)

mov sseg,ss

mov soff,sp

; Recover the C environment

; Recover the C stack

mov ss,cseg

mov sp,coff

; Recover the C registers

pop ds

pop es

pop bp

pop di

pop si

popf

; Return to the C system

ret

_FORTH ENDP

CFASM_TEXT ends

SUBTTL Data Area

_DATA segment word public 'DATA'

; This is the Data Area required by the _FORTH function.

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 132

; The Following locations are the store for the Forth++ Environment

fbuf label word

fiip dw ? ; Inner Interpreter ptr

frsp dw ? ; Return Stack ptr

fubp dw ? ; User Base ptr

fds dw ? ; Data Segment

; Space to hold the C stack pointer

coff dw ?

cseg dw ?

; Space to hold the Forth Stack Pointer.

PUBLIC __FSP ; Used by C to manipulate Forth Stack

__FSP label dword

soff dw ?

sseg dw ?

; Space to hold the Execution Address of the Forth system

eoff dw ?

eseg dw ?

_DATA ends

end

This module is merged with the CFINIT.C module to form a library. This makes the linking
process much simpler. In order to build this library one must �rst obtain the \object code" for the two
modules. To assemble the CFASM.ASM �le one would give the command:

MASM CFASM, CFASM, NUL, NUL /mx

While the CFINIT.C modules needs to be compiled:

TCC -c -ml -G CFINIT

Here we are compiling the C module with Borland's \Turbo C" compiler. The `-c' indicates that we
want to compile the �le. The `-G' instructs the compiler to optimise the code for speed rather than size.
Finally the `-ml' option instructs the compiler to use the \Large" memory model.

We are now in a position to make the library. This we do by giving the command:

TLIB CFORTH /C +CFASM +CFINIT

In this instruction we are asking the system to generate a library named
CFORTH.LIB which is case sensitive with regard to the public labels. This library consists of merging
the two object code �les CFASM.OBJ and CFINIT.OBJ that we have just produced.

C.5 Stack access

C access to the Forth stack is provided via a set of type independent macros. The header �le
CFORTH.H de�nes these macros, it should be included into the users C code.

/***/

/*** ***/

/*** CFORTH.H ***/

/*** ***/

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 133

/*** The following lines of code make up the file CFORTH.H. ***/

/*** ***/

/*

* entry() is a macro definition designed to help in the setting up of

* the jump table. To use this macro you must be defining the jump

* table, simply type:

*

* entry(func)

*

* where func is the name of the code required for the given entry.

*/

#define entry(func) { func }

/*** ***

*** The following definitions set up the types required by the ***

*** jump table. ***

*** ***/

/*

* The type PFI is defined to be a Pointer to an Function returning an

* Integer.

*/

typedef int (*PFI)();

/*

* The table entry structure is defined to be of type PFI.

*/

#define TBL struct tabentry

TBL { PFI function; };

/**/

/* */

/* Stack Manipulations */

/* */

/* The following functions are defined to Manipulate the Forth */

/* systems stack. Items can be popped off the stack and pushed */

/* onto it. All communication between the C system and the */

/* Forth system should be conducted via these functions. */

/* */

/**/

/*

* The Forth Stack Pointer is stored as a far pointer to a void.

* This is stored in the CFASM module for access by the assembly

* code.

*/

extern void far * _FSP;

/*

* The DROP(type) macro is defined to drop an item of the given type

* from the Forth stack.

*/

#define DROP(type) (type far *)_FSP += 1

/*

* The macro INDEX(type,n) is used to return the n-th stack item of the

* given type. Hence INDEX(int,0) will return the TOP int on the stack,

* while INDEX(double,1) will return the second double on the stack.

*/

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 134

#define INDEX(type,n) *((type far *)_FSP+n)

/*

* The macro IINDEX(type,offset) is used in the same manner as the

* INDEX() macro except that the offset value is in stack cells and has

* no regard to type size.

*/

#define IINDEX(type,n) *((type far *) ((int far *)_FSP+n))

/*

* The macro POP(type) is used to POP an item of the given type from the

* Forth stack.

*/

#define POP(type) *(type far *)_FSP; (type far *)_FSP += 1

/*

* The PUSH(type,val) macro is used to PUSH a given value (val) of the

* given type onto the Forth stack.

*/

#define PUSH(type,n) (type far *)_FSP -= 1; *(type far *)_FSP = n

/*

* Note:

* The macros POP and PUSH should have been defined as follows:

*

* #define POP(type) *(type far *)(_FSP++);

* #define PUSH(type,n) *(type far *)(--_FSP) = n;

*

* However Zortech C was the only system that could handle this complex

* a definition. For both Microsoft and Borland the definition has to

* be split as above.

*/

/*** ***/

/*** End of CFORTH.H ***/

/*** ***/

/**/

C.6 User code

The user places his code in a separate \user" module. The �le
CFORTH1.C is an example user module. In this example module, we provide a oating point maths
system using the C oating point code rather than developing our own.

The user must provide the `jmptbl' jump table. The routine `setup' must also be provided to
initialise any user code.

The user can write any C code they like in this �le. The functions that they want to be accessible
from Forth must be given in the jump table.

A function that is to be invoked from Forth must not have any arguments and must not return
a value. All argument passing should be performed by means of the macros provided in CFORTH.H. These
macros actually manipulate the Forth stack directly (as a C data structure).

/**/

/*** ***/

/*** CFORTH Header ***/

/*** ***/

/*** You must include the CFORTH.H header file in order to define ***/

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 135

/*** the macros used to manipulate the Forth stack. It also ***/

/*** defines the structure of the jump table. ***/

/*** ***/

/**/

#include "cforth.h"

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/**/

/*** ***/

/*** User Functions: ***/

/*** ***/

/*** The following are the C functions which are to be called by ***/

/*** Forth. After they have been defined the functions will be ***/

/*** placed in a jump table. These functions do not pass ***/

/*** parameters in normal C fashion and must have the prototype: ***/

/*** ***/

/*** int func(void) ***/

/*** ***/

/*** Ie, default functions taking no arguments. Actually the ***/

/*** functions pass their arguments via the Forth stack, which ***/

/*** appears to the C program as a data structure. Forth stack ***/

/*** arguments are accessed with PUSH and POP macros. ***/

/*** ***/

/*** To pop a value use: x = POP(type); eg, x = POP(int); ***/

/*** To push a value use: PUSH(type,x); eg, PUSH(int,-1); ***/

/*** ***/

/**/

/*

* Declare variables to hold forth segment and offset. A Forth call

* will set fseg to the Forth memory space segment address. fseg and

* ofs are used when a 16 bit Forth memory address is passed to a C

* function.

*/

unsigned fseg, ofs;

/*** ***

*** Provide floating point support. ***

*** ***/

/*

* declare floating point stack and stack pointer.

*/

double fs[100], *fsp;

int base_pointer;

/*** ***

*** Set up initial values for floating point stack pointer and ***

*** floating point base pointer. A margin of 5 elements is ***

*** allowed to cater for stack underflow, which Forth will check ***

*** for after interpreting each command line. ***

*** ***/

call_finit() { fsp=fs+5; base_pointer = 5; }

/*** ***

*** The following code is invoked by the Forth system to set the ***

*** fseg variable to the Forth data segment. Thus allowing far ***

*** addresses to be calculated (with MK_FP). ***

*** ***/

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 136

setfseg() { fseg = POP(int); }

/**

*** ***

*** Floating point functions ***

*** ***

**/

call_fdiv() { *(fsp-1) = *(fsp-1) / *fsp; fsp-- ; }

call_float() { ++fsp; *fsp = (double) POP(int); }

call_fminus() { *(fsp-1) = *(fsp-1) - *fsp; fsp-- ; }

call_fmult() { *(fsp-1) = *(fsp-1) * *fsp; fsp-- ; }

call_fplus() { *(fsp-1) = *(fsp-1) + *fsp; fsp-- ; }

call_int() {

int n;

n = (int) *fsp; fsp--; PUSH(int,n); }

fppfrom() { PUSH(float,*fsp); fsp--; }

tofpp() { ++fsp; *fsp = POP(float); }

fdup() { ++fsp; *fsp = *(fsp-1); }

fdrop() { --fsp; }

fswap() {

double temp;

temp = *fsp; *fsp = *(fsp-1); *(fsp-1) = temp; }

fover() { ++fsp; *fsp = *(fsp-2); }

frot() {

double temp;

temp = *fsp; *fsp = *(fsp-2); *(fsp-2) = *(fsp-1); *(fsp-1) = temp; }

setstackpointer() { fsp = fs + POP(int); }

fetchstackpointer() { PUSH(int,fsp-fs); }

setbasepointer() { base_pointer = POP(int); }

fetchbasepointer() { PUSH(int,base_pointer); }

framefetch() {

int index;

index = POP(int); ++fsp; *fsp = fs[index+base_pointer+1]; }

framestore() {

int index;

index = POP(int); fs[index+base_pointer+1] = *fsp; --fsp; }

d_to_f() { ++fsp; *fsp = POP(long); }

f_to_d() { PUSH(long,*fsp); --fsp; }

fless() {

if (*(fsp-1) < *fsp) { PUSH(int,-1); } else { PUSH(int,0); }

--fsp; --fsp; }

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 137

fgreater() {

if (*(fsp-1) > *fsp) { PUSH(int,-1); } else { PUSH(int,0); }

--fsp; --fsp; }

fequal() {

if (*(fsp-1) == *fsp) { PUSH(int,-1); } else { PUSH(int,0); }

--fsp; --fsp; }

f0greater() {

if (*fsp > 0) { PUSH(int,-1); } else { PUSH(int,0); }

--fsp; }

f0less() {

if (*fsp < 0) { PUSH(int,-1); } else { PUSH(int,0); }

--fsp; }

f0equal() {

if (*fsp == 0) { PUSH(int,-1); } else { PUSH(int,0); }

--fsp; }

fdepth() { PUSH(int, fsp-fs-base_pointer); }

call_acos() { *fsp = acos(*fsp); }

call_asin() { *fsp = asin(*fsp); }

call_atan2() { *(fsp-1) = atan2(*fsp,*(fsp-1)); --fsp; }

call_cos() { *fsp = cos(*fsp); }

call_sin() { *fsp = sin(*fsp); }

call_cosh() { *fsp = cosh(*fsp); }

call_sinh() { *fsp = sinh(*fsp); }

sincos() {

double temp;

temp = *fsp; *fsp++ = sin(temp); *fsp = cos(temp); }

call_exp() { *fsp = exp(*fsp); }

call_fabs() { *fsp = fabs(*fsp); }

call_floor() { *fsp = floor(*fsp); }

call_frexp() {

int n;

*fsp = frexp(*fsp,&n); PUSH(int,n); }

call_ldexp() {

int exp;

exp = POP(int); *fsp = ldexp(*fsp,exp); }

call_log() { *fsp = log(*fsp); }

call_log10() { *fsp = log10(*fsp); }

call_modf() { ++fsp; *fsp = modf(*fsp,fsp-1); }

call_pow() { *(fsp-1) = pow(*(fsp-1),*fsp); --fsp; }

call_pow10() { *fsp = pow10(*fsp); }

call_sqrt() { *fsp = sqrt(*fsp); }

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 138

fround() {

double ipart;

if(modf(*fsp,&ipart) >= 0.5) ipart=ipart+1;

*fsp = ipart; }

fmax() { if(*(fsp-1) < *fsp) *(fsp-1) = *fsp; --fsp; }

fmin() { if(*(fsp-1) > *fsp) *(fsp-1) = *fsp; --fsp; }

fnegate() { *fsp = -*fsp; }

dfpp_from() { PUSH(double,*fsp); --fsp; }

to_dfpp() { ++fsp; *fsp = POP(double); }

call_atan() { *fsp = atan(*fsp); }

call_tan() { *fsp = tan(*fsp); }

dfp_store() {

double far *ptr;

ofs = POP(int); ptr = MK_FP(fseg,ofs); *ptr = *fsp; --fsp; }

dfp_fetch() {

double far *ptr;

ofs = POP(int); ++fsp; ptr = MK_FP(fseg,ofs); *fsp = *ptr; }

/***/

/*** ***/

/*** Jump Table ***/

/*** ***/

/*** The function table follows. Functions placed in this table ***/

/*** are invoked by number when a C function call is received ***/

/*** from Forth. The code to process Forth C calls and invoke ***/

/*** these functions is in CFINIT.C. The entry macro, which in ***/

/*** used to place entries into this table, is defined in the ***/

/*** header file CFORTH.H ***/

/*** ***/

/***/

TBL jmptbl [] =

{

/* floating point initialisation */

entry(setfseg),

/* floating point support */

entry(call_fdiv), entry(call_finit), entry(call_float),

entry(call_fminus), entry(call_fmult), entry(call_fplus),

entry(call_int), entry(fppfrom), entry(tofpp),

entry(fdup), entry(fdrop), entry(fswap),

entry(fover), entry(frot), entry(setstackpointer),

entry(fetchstackpointer), entry(setbasepointer),entry(fetchbasepointer),

entry(framefetch), entry(framestore), entry(d_to_f),

entry(f_to_d), entry(fless), entry(fgreater),

entry(fequal), entry(f0greater), entry(f0less),

entry(f0equal), entry(fdepth), entry(call_acos),

entry(call_asin), entry(call_atan2), entry(call_cos),

entry(call_sin), entry(call_cosh), entry(call_sinh),

entry(sincos), entry(call_exp), entry(call_fabs),

entry(call_floor), entry(call_frexp), entry(call_ldexp),

entry(call_log), entry(call_log10), entry(call_modf),

entry(call_pow), entry(call_pow10), entry(call_sqrt),

entry(fround), entry(fmax), entry(fmin),

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 139

entry(fnegate), entry(dfpp_from), entry(to_dfpp),

entry(call_atan), entry(call_tan), entry(dfp_store),

entry(dfp_fetch)

};

/**/

/*** ***/

/*** Start Up ***/

/*** ***/

/*** The following code is executed as part of the initialisation ***/

/*** sequence. It should perform any initialisation required by ***/

/*** the C code. ***/

/*** ***/

/**/

void startup()

{

call_finit();

}

C.7 Making the C Overlay

To make the C overlay, one must �rst compile the user code CFORTH1.C with the command:

TCC -c -ml -G -d CFORTH1

The `-d' option is instructing the compiler to merge any duplicate strings it may �nd.
Having compiled the user code successfully we are able to link the �le with the CFORTH.LIB

library that we produced earlier:

TLINK /c C0L CFORTH1, CFORTH.OVL, CFORTH, CFORTH CL

In this command, we are linking the user code CFORTH1.OBJ with the standard pre�x code C0L.OBJ, the
library CFORTH.LIB and the standard C library CL.LIB. We have instructed the system to produce the
overlay �le CFORTH1.OVL. In addition to this, the command will also produce a map �le CFORTH.MAP.
Finally the `/c' option is given to instruct the system that all label names are case sensitive.

As Ms-Dos does not provide a \make" facility, we provide two batch �les that will compile the
C/Forth interface library and the users code into the C overlay that would be loaded by the CForth++
system. The MAKEOVLL.BAT �le uses the Large memory model:

rem *** Make the library ***

masm cfasm cfasm nul nul /mx

tcc -c -ml -G -d -r- cfinit

tlib cforth /C -+cfasm -+cfinit

rem *** Compile the overlay CFORTH1.C ***

tcc -c -ml -G -d cforth1

rem *** Link it with the Large libraries ***

tlink /x \tc\lib\c0l cforth1, cforth1.ovl, cforth, cforth \tc\lib\mathl

\tc\lib\emu \tc\lib\graphics \tc\lib\cl

It is also possible to use the Small memory model. For this one should use the MAKEOVLS.BAT

batch �le. This should be used if at all possible, as the C system requires less overhead for a small model,
rather than the large memory model.

rem *** Make the library ***

masm cfasm cfasm nul nul /mx

Practical and Theoretical Aspects of Forth Software Development: Mixed Languages Interface 140

tcc -c -ms -G -d -r- cfinit

tlib cforth /C -+cfasm -+cfinit

rem *** Compile the overlay CFORTH1.C ***

tcc -c -ms -G -d cforth1

rem *** Link with the Small libraries ***

tlink /x \tc\lib\c0s cforth1, cforth1.ovl, cforth, cforth \tc\lib\maths

\tc\lib\emu \tc\lib\graphics \tc\lib\cs

This batch �le di�ers from the previous only in that it compiles both the CFINIT module and the CFORTH1
user module using the small memory model. It also links the system together with the standard small
libraries (c0s, maths and cs as opposed to c0l, mathl and cl).

