Perl vs. Forth

Peter Knaggs

University of Paisley, High Street,
Paisley. PA1 2BE Scotland.

pjk@bcs.org.uk

May 19, 1998

Abstract

“Perl” is a scripting language originally developed
for the Unix environment, collecting a number of
useful Unix tool into a flexible interpreted C-like
language. Over the past three or four years Perl has
taken the Unix world by storm, and has become the
standard language for Internet (Common Gateway
Interface or CGI) programming.

This paper looks at some of the perceived advan-
tages of Perl and investigates what, if any, lessons
the Forth community can learn from this language.

1 Overview of Perl

To those who merely like it, Perl is the Prac-
tical Extraction and Report Language. To
those who love it, Perl is the Pathologically
Eclectic Rubbish Lister. And to the min-
imalists in the crowed, Perl seems like a
pointless exercise in redundancy.

(Wall, Christiansen, and Schwartz 1996)

Perl was original developed by Larry Wall as a shell
for the Unix system. Over the years Larry kept on
adding new features to Perl as he required them.
By version 4, and now 5, of the language Perl has
progressed from a scripting tool to a full blown pro-
gramming language incorporating many of the tools
the Unix shell programmer finds invaluable (find,
grep, sed, awk, etc.).

So, just what are the features of Perl that make it
particularly useful for programming Unix systems
and CGI in particular. They can be broken down
into five main areas.

1.1 Data Structures

Perl provides a number of flexible and very use-
ful data structures. The first of these is the ‘list’.
This is a simple list of data objects, which may be
accessed by position, i.e., a simple array or tuple.
However, operators are also provided that allows
the list to be treated as a stack or as a queue.

The second, and probably the most useful of the
data structures, is the ‘hash’, or associative array.
This is a relational structure where any object can
be used as the key to the relation and any object
can be used as its value, this includes a list (or
tuple), another hash or a single data item. This
provides the programmer with a built in relational
database.

The final data structure is oriented towards Perl’s
official role of a report language. The ‘format’ al-
lows the programmer to specify the form of a record
on the output device, with particular fields being
bound to specific variables. The write command
is used to write a record to the output device in the
given format. The system keeps track of the num-
ber of lines used, the number of pages used, etc. It
even allows for the definition of a separate header
format, which will be output at the start of every

page.

1.2 Objects

Version 4 introduced a concept known as packages.
A package was simply a separate name space, very
similar in concept to Forth’s wordlists. The idea
was grossly misunderstood by most users. In ver-
sion 5 the idea was converted into a full blown ob-
ject handling system, complete with a definable in-
terface, constructor, destructor, etc.

The system provides for a library of pre-defined ob-
jects. These objects are kept in source form and
may be loaded dynamically as required. It is inter-
esting to note the large number of library objects
provided by the Perl community. These are stored
in a central FTP archive (the Comprehensive Perl
Archive Network or CPAN), which is supported by
the community.

1.3 Regular Expressions

Probably the most powerful aspect of Perl is its
string handling. This is primarily handled via an
extended regular expression (regex) handling, or
pattern matching system. Perl’s regex is based on
the standard Unix regex as used in grep etc., but
has extended the system into an extremely power-
ful string parser.

Many of the search engines available over the In-
ternet accept a “Perl regular expression” as their
search string. Although it is becoming more com-
mon to offer the user a simpler interface and convert
the request into a Perl regex for internal processing.

In JavaScript version 1.2 they have introduced a
regex object, and extended the string object to in-
clude regex handling methods. In particular they
have introduced:

match will attempt to match a regex with the
string. For example:

m/ (\d*) \w(\d*) \w(\dx*) /

will match with three numbers separated by a
single white space character. The parentheses
indicate sections of the regex that should be
remembered. These sections are copied into
the variables $1, $2, and $3 respectively.

replace will replace the matched expression with
a new value, note that the $§ variables are avail-
able for use in the replacement value. For ex-
ample:

s/bold\ ((["\)1%)\)/$1/

will replace any occurrence of “bold(text)”
with “text”.

split will return a list (or array) of strings, split-
ting the original according to the regex. For

example:
$str = "hello.this is:a test"
@list = split(/.l,|:/,$str)

will split the string into three: “hello”, “this
is”, and “a test”, the split occurring on a
dot, comma, or colon as described the regex
“/.1,1:/”. The variable @Qlist will contain the
three fragments as a list (array, stack, queue,
or tuple, depending on how you access the vari-
able).

Given that it is possible to read a single line, a para-
graph/record, or a whole file into a single string
and then manipulate the string using these built in
regex functions this provides a very fast and power-
ful search/replace facility. It has been shown that
a Perl program that reads a file into a string and
then performs a match operation is faster than the
equivalent Unix grep (get regular expression) com-
mand!

1.4 System Interaction

As Perl was originally developed as a shell it has a
very close interaction with the operating system.

commands can be executed and the result anal-
ysed. Where a feature is not already incor-
porated into Perl, it provides the programmer
with the facility to invoke the relevant com-
mand. The input to the command, and the
output from the command are under program-
mer control, thus the program can respond to
messages from the external program.

signals or interrupts can be intercepted. Special
handlers can be provided for all of the stan-
dard signals (interrupts) by simply assigning a
function to a special array.

communication ports are accessed via a set of
standard ‘socket’ functions.

multitasking is handled by the standard Unix
process functions, namely, fork, kill, and pipe.
All fully integrated into to the basic language.

In addition to these built in facilities, Perl offers the
ability of binding a hash with a database file, using
the standard dbm system. Thus accessing an entry
in the hash will in fact be an access to the database
file. Consequently a new command (delete) has
been provided that allows the programmer to delete
an entry from the hash, and thus the database.

1.5 Source Control

Larry Wall has kept absolute control over the devel-
opment of the language. Others have implemented
new features, which Larry has incorporated into the
next release of Perl or not as he sees fit. This means
that there is a well known standard base on which
to develop the application and/or library.

The version number of the executing system is
available to the programmer. A special command
has been provided to allow programmers to specify
which version their module was designed for. For
example, if a module takes advantage of a feature
added to Perl version 5.1 he can place the com-
mand:

requires 5.1

at the beginning of the program. If this command is
executed in Perl 5.1 or later, this will return true,
otherwise it will report an error message stating
that the code requires Perl version 5.1 or later.

2 Forth Lessons

It is possible to see from the preceding that there
are a number of lessons the Forth community can

learn from Perl and it’s community. These can be
split into two main areas: major and additional
lessons.

2.1 Major lessons

There are two major lessons that the Forth com-
munity can learn from the Perl experience. Both
of these lessons are already known to the commu-
nity, however, it has been very slow in addressing
them and promoting a unified position.

2.1.1 Source Control

The ISO Forth (International Standards Organisa-
tion 1997) standard is a good step in this direction,
however, is does not guarantee the existence of any
particular word in the dictionary. It is simply not
possible to provide someone with the source for a
complex program and expect it to work on their
system without first specifying all kinds of environ-
mental dependencies that would put most people
off even attempting.

There needs to be a way of providing a central
bank of library code that will operate across dif-
ferent Forth platforms. A bank of source code li-
braries written under ISO Forth would only be a
start. Such a code bank would require organisa-
tion and documentation, thus making the relevant
library easy to find and use.

A centralised library, complete with a librarian is
required. The librarian can check the quality of the
modules and more importantly the documentation
submitted and accept or refuse the module. Hav-
ing accepted a module they can then classify the
module. All of the modules should be provided on
a freeware or shareware basis.

2.1.2 Objects

Many people have looked at adding object oriented
programming to Forth, each developing their own
extensions. It is time a standard was developed
for these extensions. The world embraced object
oriented programming over 12 years ago, perhaps
it time Forth was redeveloped to integrate objects

into the kernel rather than as a bolt-on.

2.2 Additional lessons

There are a number of additional lessons that re-
quire the Major lessons be learned and acted upon
before they can truly be addressed. As with the ma-
jor lessons the community is already aware of these,
but have yet to address them to the satisfaction of
the computing community at large (programmers,
software engineers, computer engineers, computer
scientists).

2.2.1 Flexible Data Structures

Larry Wall chose to provide two extremely use-
ful and very flexible data structures, namely the
list and the hash. These relate very closely to the
mathematical concepts of a tuple and mapping re-
spectively, and may consequently lead to some very
simple and effective programming.

Such data structures are simple enough to imple-
ment on an individual basis. Rather than every
Forth programmer developing their own version,
the community should provide flexible list /hash ob-
jects as a source level library. Thus, only one or two
programmers (those who provide the library mod-
ule) need be concerned with the development of the
objects, while the rest of the community simply use
them.

2.2.2 String Handling

Given a truly object oriented Forth system it would
be possible to provide a “string” object, which in-
cludes all of the normal string handling functions:
read line, length, substring, concatenate, character
at, etc. Taking a leaf from JavaScript/1.2 it would
be possible to extend such a string object to include
regular expression handling: match, replace, split.
This would provide Forth with the same string han-
dling capabilities as the most up-to-date languages.

2.2.3 System Interaction

With the introduction of a number of special ob-
jects it would be possible for all Forth system
to provide an interface to the underlying sys-
tem. These objects will have to be defined with
grate care to allow interaction with large operat-
ing systems hosted systems and small single board
systems. The device tree specified in the Boot
Firmware (IEEE 1994) system is an example of how
object oriented thinking can provide such a facility.

3 Conclusions

Can the Forth community learn any lessons from
modern developments and methods? The forgoing
indicates that there is much the community can
learn from just one of these modern developments.
The Forth community has many highly intelligent
individuals, who are more than capable of learning
these lessons. Unfortunately half of them are too
interested in the internal workings of * while others
are all ‘individuals’.

In 1983 Forth was ahead of its time (Rather, Col-
burn, and Moore 1993) and with the Forth Interest
Group to promote it, in a very strong position. The
rest of the programming world caught up around
5 years later, now another 9 years later the world
has moved on and Forth has hardly moved. In 1994
there was the ANS Forth (American National Stan-
dards Institute and Computer and Business Equip-
ment Manufacturers Association 1994), later rati-
fied as ISO Forth (International Standards Organi-
sation 1997) in 1997, but the new standard is, while
very useful, not going to drive the language for-
ward, only the community can do that!

Nineteen ninety four also saw the introduction of
the IEEE Open Boot Firmware standard (IEEE
1994), which did at least take the language further.
If the Forth language is to be a programming lan-
guage of the future it is going to have to catch up
with modern systems, and ideas about program-
ming. Otherwise, it is going to become another
interesting relic.

Some kind of central authority is need to push the
language and further its development. The Forth

Interest Group has been behind the language for
many years, yet there has been very little develop-
ment evident.

References

American National Standards Institute and
Computer and Business Equipment Manu-
facturers Association (1994, March). Amer-
ican National Standard for information
systems: programming languages: Forth:
ANSI/X3.215-1994. 1430 Broadway, New
York, NY 10018, USA: American National
Standards Institute. Approved March 24,
1994.

IEEE (1994). IEEE Standard 1275-1994 — Stan-
dard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices.
IEEE. IEEE 1275 Technical Committee.

International Standards Organisation (1997,
March). Information technology — Program-
ming languages — Forth (First ed.). Inter-
national Standards Organisation. ISO/IEC
15145:1997.

Rather, E. D., D. R. Colburn, and C. H.
Moore (1993, March). The evolution of Forth.
In ACM (Ed.), ACM SIGPLAN HOPL-II.
2nd ACM SIGPLAN History of Program-
ming Languages Conference (Preprints), Vol-
ume 28(3) of ACM SIGPLAN Notices, New
York, NY, USA, pp. 177-199. ACM Press.

Wall, L., T. Christiansen, and R. L. Schwartz
(1996). Programming Perl (Second ed.).
O’Reilly and Associates, Inc.

