
Using IBM's NetBios from Forth

Dr. Peter Knaggs,

Dept. Computing and Information Systems,

University of Paisley,

High Street, Paisley,

Scotland.

pjk@paisley.ac.uk

August 4, 1995

Abstract

A general overview of the Ibm NetBios system is given and its Multi-Tasking abilities

are discussed. A Forth interface that exploits these is presented along with an example

application program, which illustrates the integration of NetBios with Forth's Multi-Tasker

is described.

1 Introduction

The Network Basic I nput/Output System (NetBios) is an \application program interface" (Ibm
Corporation 1987) between an application task and a Local Area N etwork (Lan) designed to
provide a common communication capability between Ibm Pcs and compatibles. It has been
implemented on a wide variety of physical networks including Ethernet, Token ring, Insertion
ring, etc.

NetBios provides a communication link (or connection) between named entities using two main
forms of communication, known as sessions and datagrams. Any application may add a name
to the network. In a Forth Multi-Tasking system it would be possible to provide two separate
application tasks, each with its associated name, on the same host machine. The two tasks would
then communicate with each other using the NetBios and neither task need know where the
other is situated.

All requests to the NetBios are made using a N etwork Control B lock (ncb) supplied by the
application program. The ncb holds parameters for the network call and, on completion, contains
status information.

2 Functions

The functions provided by NetBios can be broken down into �ve groups: Naming, Sessions,
Datagrams, Broadcasting and General Housekeeping. (See Ibm Corporation (1987) or Nine Tiles
(1988b) for a complete breakdown of the NetBios functions.)

1

2.1 Naming

Each network card has its own unique physical name. To use this name in an application would
be too restrictive as such an application would be forced to know with which physical system
to communicate. NetBios provides some naming capabilities to allow applications to refer to
logical, rather than physical, names thus allowing a network application to be independent of any
physical machine.

The Add Name function will add a given logical name to the network, provided that the name
is unique. This will provide a logical name for the physical system performing the add name
function. Each physical system may have several logical names that could be used by di�erent
tasks or applications1.

The function Add Group Name will add a group name to the network. A number of di�erent
physical systems can add the same group name, in which case they are considered to be a member
of the same group. Thus a group name is a logical name that may refer to any number of physical
machines. This facilitates communication to a selected group of machines, perhaps with special
hardware to facilitate certain tasks. As with logical names each physical system may be in several
di�erent logical groups. Thus any given machine may have a number of unique logical names and
a number of group names2.

Remove is used to remove a name from the Network. If the name is an logical name, the name is
completely removed. If it is a group name, the machine is removed from the group.

2.2 Sessions

A Session provides a one-to-one connection, analogous to a telephone call.

A Session is started by one application making a call to another. The called application must be
listening for an incoming call. To call another application, the Call function is used. The Listen
function is used to wait for an incoming call, while Hangup is used to disconnect the call. If you
call a group name, only one member of the group will receive the call. This is known as making
a virtual circuit (Tenenbaum 1988)

Once the connection has been established the applications can exchange data (up to 64K at a time)
with the guarantee that it will arrive. To exchange data, one application must use the Transmit
function while the other is using a Receive function. If one side issues a transmit before the other
has issued the corresponding receive, the data will be bu�ered until the receive is issued.

2.3 Datagrams

A datagram is a one-shot communication of up to 512 bytes.

If we can equate a session with a telephone call, then we can equate a Datagram with a letter in
a postal system. Each letter (datagram) is delivered separately, thus it must carry the complete
destination address. If letter is lost the system does not time-out and automatically send a
duplicate; error control is the user's responsibility. Finally, letters do not necessarily arrive in the
order they are mailed (Tenenbaum 1988).

With a Session a connection is �rst established and data is then transmitted along the connection.
The connection remain open until the end of the session when it is terminated. With a Datagram

1The NetBios limits the maximum number of names to 255, although in practise it is hardware limited to 16.
2The NetBios does not distinguish between logical and group names, thus a group name uses up one of the

logical name slots on each machine in the group.

2

a new connection is established, the data transmitted and the connection is terminated for each
datagram.

A Datagram Transmit will send a datagram to a given name. The receiving name must be waiting
to receive it otherwise it will be lost. When a datagram is sent to a logical name, only that name
will receive it. However, if it is sent to a group name, all the members of that group will receive
a copy.

A Datagram Receive will wait for a datagram to be received by a given name. A datagram
transmitted from any name to the given name will be accepted. A datagram receive request must
be pending to receive a datagram, any datagram sent when a datagram receive request is not
pending will be lost.

2.4 Broadcasting

A Broadcast is a special form of datagram that is sent to all names. The Broadcast Transmit

function will send a datagram to all names known to the network. The Broadcast Receive function
is similar to the datagram receive function, except it will only receive a Broadcast message, thus
a broadcast message will only be received by names that have a broadcast receive pending.

2.5 House keeping

There are four basic functions that are designed for the network manager to control the network
system. The Reset function is used to totally reset the network card. Network Status will return
the current status of the network card. A Cancel function is used to cancel a given command.
Finally the Un-Link function disconnects from a remote disk server.

3 Invoking NetBios Functions

All NetBios functions are invoked in the same manner. The data required by the function is
placed in the relevant �elds of the ncb and the NetBios system call is invoked. This will take
the ncb and post it into the NetBios for processing. The actual processing of the function is
interrupt driven and will run concurrently with the application program.

NetBios has three di�erent ways of returning back to the application program. The �rst is referred
to as a Wait function, where NetBios will process the complete function before returning to the
application.

The second is to post a No-Wait function. NetBios will add the function to its internal list of
functions and return to the application directly. The application programmust poll the \command
complete"
ag of the ncb to determine if the NetBios has completed the function.

The �nal method is to post a No-Wait function giving the address of an interrupt or callback
routine. TheNetBioswill add the function request to its internal list and return to the application
program. When the function has been completed, it will invoke the callback routine.

4 Multi-Tasking

In order to exploit the concurrent execution abilities of Forth and the NetBios, we use the
\No-Wait with callback" invocation method. When a NetBios function is used, the invoking
task will typically execute a STOP after making the NetBios call.

3

In the Forth/NetBios interface, a �eld has been added to the ncb to store the identity of the
invoking task. The callback routine passed to the NetBios is always a \wake task" routine that
extracts the task identity from the ncb and sets the task status to active, thus waking the task
associated with the NetBios function.

More than one task can have a NetBios request pending. For example, one task may be waiting
on a Broadcast Receive, whilst another is waiting on a Datagram Transmit. Any one task may
have several NetBios requests pending. For example, in the \Net-Chat" application, one of
the tasks posts four Datagram Receive requests to ensure that no incoming datagrams are lost
(see sections 5.2 and 9). When the task is made active it has to poll the ncbs of the pending
commands in order to discover which of them has completed. The NetBios does not impose a
limit on the number of requests pending, although a network card might, there is however a cost
as each request must have a separate ncb.

5 Examples

In this section we provide the reader with two examples of how the Forth/NetBios interface
can be used.

5.1 Block Transfer

To transfer a block of data from one system to another, both systems must make themselves
known to the network. This would be done by each of them creating an ncb. They would then
add their logical names to the network.

System 1 System 2

NEWNCB NCB

" PETER" NCB ADD-NAME

NEWNCB NCB

" JOHN" NCB ADD-NAME

Now PETERmay call JOHN. The connection is made when Peter is calling John and John is listening
for a call from Peter (or when John makes a call to Peter, although Peter must be listening for
the call in this case).

" JOHN" NCB PHONE

STOP

" PETER" NCB LISTEN

STOP

PETER will now send a block of data over the network to JOHN.

9 BLOCK (Address of bu�er)
1024 (Number of bytes)
NCB (NCB to use)
TX STOP (Transmit)

10 BLOCK (Address of bu�er)
1024 (Number of bytes)
NCB (NCB to use)
RX STOP (Receive)

One of the systems must now disconnect. Our convention is that the caller is in charge of the
connection and hence is responsible for the disconnection.

NCB HANGUP (Disconnect)

The STOPs are required to allow other tasks to continue executing and to synchronise communi-
cations.

4

5.2 Net-Chat

A simple example application program has been developed along the lines of the \Net-Chat"
program by Glass (1989). This is a Citizen Band radio emulation, in that if anyone sends a
message over \Net-Chat", it will be received by all other systems running the application.

The basic principle to a \Net-Chat" implementation is to have a group name of \NET-CHAT" and
an logical name for each person on the system. The screen is divided into two sections with a
small 5 line window provided for the Net-Chat display and a larger second window displaying the
normal OPERATOR environment.

A task (\CHAT-TASK") will post four Datagram Receive requests on the group name NET-CHAT.
When a datagram is sent to NET-CHAT, all the members in the group will receive a copy (including
the sender). When receiving messages, CHAT-TASK will scan through the ncbs to discover which
one was honoured. It will take the message bu�er of the ncb, display it in the Net-Chat window
and will use the ncb to post a new Datagram Receive request. If only a single Datagram Receive

was posted, it would be possible to miss a datagram that arrives between the previous datagram
being received and the Datagram Receive request being re-posted. Having multiple receive requests
allow us to continue to receive messages while we are processing the �rst message, thus we should
not miss any messages.

To send a message, the user must type the word CHAT. This will ask for a message to be sent. It
will send the message bu�er to the group name NET-CHAT.

The code and a more detailed description, is given in section 9.

6 Problems

As this system was originally intended for use with the Novix micro-processor system, it was devel-
oped using the polyForth system. For various reasons (see Knaggs (1993) for more information)
it was later ported to the Forth++ system. In this section we describe some of the problems
that had to be overcome before this system became fully operational.

6.1 polyForth

The polyForth system operated correctly when used in a network based environment. When we
loaded the NetBios interface code, the system stopped operating altogether. The polyForth

code appeared to be correct while the interface code also appeared to be correct.

After some experimentation, we discovered that the problem only occurred when the polyForth
serial communications package was loaded. By forcing the system not to load this package, the
problem was overcome. In order to continue with this project, it was necessary to convert this
system for use with the Forth++ system. Thus, the real cause of the problem was never inves-
tigated.

6.2 Callbacks

The original version of this system used the No-Wait and Poll method of posting a NetBios

function. This meant that when an application task had posted a NetBios function, it would
enter a loop testing the command complete
ag of the relevant ncb. As the task is actively waiting
for the function to complete, it is scheduled for time by the multi-tasking scheduler.

The system was redeveloped to take advantage of the \No-Wait with Callback" ability of the

5

NetBios. The system developed to utilise this facility is described in section 4. The task posting
a NetBios function is allowed to continue execution. Eventually the task will execute a STOP.
When the NetBios function has been completed the NetBios will invoke the given callback code.
This code will reset the associated task's status to active thereby making sure that the task will
be executed.

This allows a task to post as many NetBios functions as it requires. It also allows the task to
be removed from the scheduler's active tasks list. When the NetBios function has completed3 it
will add the task to the active task list, thus removing the responsibility of polling the command
complete
ag altogether.

6.3 Porting

The port from polyForth to Forth++ was a very simple one with only one small problem. None
of the code had to be changed with the exception of the two machine code words.

The polyForth assembler system is designed to be as processor independent as possible, while
the assembler provided with the Forth++ system is designed around the Intel 80x86 family of
processors. The two machine code words had to be converted from the polyForth assembler
form into the Forth++ form. The function of the code was not altered in any way, nor was the
machine code produced altered. The only alteration was to the source code in order to produce
the same object code.

We also took this opportunity to exploit Forth++'s ability of holding 64 KBytes of strings to
enhance the error messages and improve the error handling provided by the interface.

7 Comparison with C interface

When compiled, the NetBios interface shown in section 8 forms a run-time library. The library
comprises of 186 lines of Forth code and compiles to just 1.2 KBytes (when compiled under
Forth++). A simple C interface (taken from Schwaderer (1988)) takes some 110 lines of code
(1.8 KBytes when compiled) and 270 lines of compile time de�nitions to provide the same func-
tionality as the (net) word. The C interface requires the application developer to have a full
knowledge of the NetBios and the ncb. A full C library that provides the same functionality as
the interface shown in section 8 requires some 115 KBytes (when compiled using Microsoft C).

As the C language does not directly cater for multi-tasking, such an interface has to use the No-
Wait or No-Wait and Poll techniques for invoking a NetBios function. Using the No-Wait and

Pool technique puts the onus on the application programmer to poll the command complete
ag,
thus does not provide the full abstraction one might hope for.

8 Interface Code

The following is an annotated source listing of the NetBios Interface provided for use with the
Forth++ system.

8.1 Error Handler

Here we de�ne the word \(netable)" to display an understandable network error message. It
only displays the errors documented in the NetBios manual (Ibm Corporation 1987). Any error

3or any one of the NetBios functions associated with the task has completed.

6

code not de�ned in the manual will be displayed as \Unknown".

HEX

: (netable)

CASES

01 CASE ." Illegal Buffer Length" END-CASE

03 CASE ." Illegal Command" END-CASE

05 CASE ." Timed Out" END-CASE

06 CASE ." Message Incomplete" END-CASE

08 CASE ." Illegal Session Number" END-CASE

09 CASE ." No Resource Available" END-CASE

0A CASE ." Session Closed" END-CASE

0B CASE ." Command Cancelled" END-CASE

0D CASE ." Local Duplicate Name" END-CASE

0E CASE ." Name Table Full" END-CASE

0F CASE ." Name Not Registered" END-CASE

11 CASE ." Session Table Full" END-CASE

12 CASE ." Call Rejected" END-CASE

13 CASE ." Illegal Name Number" END-CASE

14 CASE ." Destination Not Found" END-CASE

15 CASE ." Name Not Found" END-CASE

16 CASE ." Remote Duplicate Name" END-CASE

17 CASE ." Name Deleted" END-CASE

18 CASE ." Session Aborted" END-CASE

21 CASE ." NetBios is busy" END-CASE

23 CASE ." Invalid LAN number" END-CASE

24 CASE ." Command not found" END-CASE

26 CASE ." Illegal Cancel Command" END-CASE

34 CASE ." Illegal Data Format" END-CASE

DROP

." Unknown"

END-CASES

;

We now de�ne the default action to be taken when a network error occurs. This is de�ned in the
word (neterror), it will abort the current operation and display an error message of the form:

Network Error code: 15 (Name Not Found)

Displaying the network return code and a text message relating to the code (if known). Note
that the word ?CASE takes a
ag of the stack and executes the code between the ?CASE and the
END-CASE if the
ag is true, otherwise it simply skips over the code.

: (neterror) (n --)

CR ." Network Error code: " DUP . ASCII (EMIT

CASES

FF CASE ." Not Finished" END-CASE

DUP 50 FF WITHIN ?CASE ." Hardware Fault" DROP END-CASE

DUP 40 50 WITHIN ?CASE ." Unusual Condition" DROP END-CASE

(netable)

END-CASES

ASCII) EMIT CR ABORT

;

DECIMAL

Next we de�ne the network error handling. This is provided by the word NETERROR, it takes the
NetBios return code and invokes the word, the execution token of which is stored in the user
variable 'NETERROR, if there has been an error, otherwise it simply removes the return code. The
de�ning word USER* is used to de�ne a user variable at the next free slot in the user area.

7

USER* 'NETERROR

: NETERROR (n --)

?DUP IF 'NETERROR @ EXECUTE THEN

;

Finally we initialise the network error handler to be our default error handler.

' (neterror) 'NETERROR !

8.2 Network Control Block

In this part of the system we de�ne the logical names for the �elds of the network control block
(ncb), these are the names as given in the manual. It should be noted that we are using the @

symbol to indicate a segment and o�set pair in accordance with the manual. The run-time action
of these words is to return the address of the given �eld in the given ncb.

The word pos is a de�ning word, the size of the �eld (in bytes) is given on the stack, pos will
then de�ne a word, the action of which is to add the required byte o�set to an address in order to
give the address of the required �eld. We have added the TASK@ �eld to hold the address of the
invoking task. This is not part of the standard ncb structure but has been added to allow the
callback routine to identify the associated task. Finally, the constant ncb_size is de�ned to hold
the size of our ncb structure (in bytes).

: pos CREATE OVER C, + DOES> C@ + ;

0 \ Initial byte count

1 pos CMD 1 pos RETCODE 1 pos LSN 1 pos NUM

4 pos BUFFER@ 2 pos LENGTH 16 pos CALLNAME 16 pos NAME

1 pos RTO 1 pos STO 4 pos POST@ 1 pos LANA_NUM

1 pos CMD_CPLT 14 pos RESERVED 4 pos TASK@

CONSTANT ncb_size

Next we de�ne some ncb control words. The �rst of these is NEWNCB, this will allocate ncb_size
bytes of memory to act as an ncb. It also creates a word, the action of which is to place the
address of this memory area onto the stack.

: NEWNCB (--)

CREATE HERE ncb_size DUP ALLOT ERASE

;

The second control word is TIME-OUT, this is used to set the \Receive" and \Send" time-outs for
a given ncb. The time-outs are given in increments of 1

2
seconds. The system is initialised to no

time-outs by default.

: TIME-OUT (Receive-Time-Out Send-Time-Out NCB --)

DUP STO ROT SWAP C! RTO C!

;

The last of the ncb control words is COPYNCB. This is used to copy the data from one ncb to
another.

8

: COPYNCB (Source-NCB Destination-NCB --) ncb_size CMOVE ;

8.3 Assembler Interface

This is where we have developed the assembler code that interfaces between the Forth++ system
and the NetBios.

First, we de�ne a word FIELD that returns the byte o�set of a named �eld in the ncb. As this
word is being de�ned exclusively for use in code level de�nitions, we place its de�nition in the
ASSEMBLER wordlist.

ASSEMBLER DEFINITIONS

: FIELD ' >BODY C@ ;

FORTH DEFINITIONS

We now de�ne the assembler word (post). This is the callback4 code that is invoked by Net-

Bios when it has completed a No-Wait with Callback operation. On entry to this code, the ES:BX
register pair are pointing to the start of the ncb that has completed, the status of all other registers
are unknown, thus we can not make any assumptions about the state of the system (other than
the value of ES:BX). The callback routine uses the address stored in the TASK@ �eld of the ncb to
discover which task is related to the ncb. It will then place a 1 in that task's STATUS variable,
thereby adding that task to the scheduler active task list.

CREATE-INTERRUPT (post)

DS PUSHSEG BX PUSH AX PUSH ES AX MOV AX DS MOV

FIELD TASK@ 2+) BX@ AX MOV AX PUSH

FIELD TASK@) BX@ AX MOV AX BX MOV

DS POPSEG 1 # USER STATUS MOV

AX POP BX POP DS POPSEG

IRET

END-CODE

This code is given as it is provided in the Forth++ interface. We now give the code again in a
commented Intel assembler format.

post: push ds ; Save the registers

push bx ; we are going to use

push ax

mov ax,es ; Copy ES to DS

mov ds,ax

mov ax,[bx+66] ; Get the DS for the task

push ax ; Save it for later

mov ax,[bx+64] ; Get the offset of the task

mov bx,ax ; Save in BX

pop ds ; Recover task's DS

mov [bx+0],#1 ; Set task's status to active

4NetBios refer to this as a \post" routine.

9

pop ax ; Recover registers

pop bx

pop ds

iret ; Return from interrupt

The next word we de�ne is (net). This word will initialise the ncb with a given command (CMD),
bu�er (BUFFER@) and post routine (POST@). It will then invoke the NetBios interrupt asking the
NetBios to perform the function indicated by the command number. The POST@ value passed to
this word is the 16 bit o�set of the (post) routine. If this o�set is 0, an address of 0000:0000
is placed in the POST@ �eld. When the NetBios returns from the interrupt it provides a \return
value" that is passed back to the calling word.

HEX

CODE (net) (NCB Buffer Command 'Post -- Retcode)

CX POP AX POP DX POP DI POP

AL FIELD CMD) DI@ MOV DS AX MOV

AX FIELD BUFFER@ 2+) DI@ MOV DX FIELD BUFFER@) DI@ MOV

CX AX MOV 0 # AX = NOT IF CS AX MOV THEN

AX FIELD POST@ 2+) DI@ MOV CX FIELD POST@) DI@ MOV

DS AX MOV

AX FIELD TASK@ 2+) DI@ MOV BX FIELD TASK@) DI@ MOV

ES PUSHSEG BX PUSH DS AX MOV AX ES MOV DI BX MOV

5C INT BX POP ES POPSEG 0 # AH MOV AX PUSH

NEXT

END-CODE

DECIMAL

Again, this code is given as it is provided in the Forth++ interface. We now give a version of
the same code, with comments, in Intel assembler format.

net: pop cx ; CX = POST@ offset

pop ax ; AX = NetBios command

pop dx ; DX = BUFFER@ offset

pop di ; DI = NCB offset

mov [di+00],al ; Set NetBios command in the NCB

mov ax,ds

mov [di+06],ax ; Set the BUFFER@ segment to the current DS

mov [di+04],dx ; Set BUFFER@ to the given offset

mov ax,cx ; Is POST@ offset zero?

cmp ax,#0

jne $1 ; Yes, then AX and CX = 0

mov ax,cs ; No, then set AX to current CS

$1: mov [di+46],ax ; Set POST@ segment to CS (0000 if CX=0000)

mov [di+44],cx ; Set POST@ offset to CX

mov ax,ds

mov [di+66],ax ; Set TASK@ segment to current DS

mov [di+64],bx ; Set TASK@ offset to task user area

push es ; Save registers ES:BX

push bx

mov ax,ds

mov es,ax ; ES:BX = NCB address

mov bx,di

10

int 5Ch ; Invoke NetBios interrupt

pop bx ; Recover ES:BX

pop es

mov ah,#0 ; Clear top byte of "Return Value"

push ax ; Return "Return value"

NEXT ; Re-enter inner interpreter

8.4 Low-Level interface

The next part of the interface de�nes the low-level Forth words that are used to interface with
the assembler de�nitions.

The �rst of these words is +NET. It will post a NetBios function and wait for it to complete before
returning. It will then process the \Return Value", checking it for errors.

: +NET (Buffer NCB Command --)

ROT SWAP 0 (net) NETERROR

;

The second word being -NET which will post a network function to the NetBios system using the
No-Wait with Callback variant of the command. The calling task will be placed in the scheduler's
active list on completion of the function. However, the task is not removed from the active list by
this word. This is left to the application.

: -NET (Buffer NCB Command --)

128 OR ROT SWAP (post) (net) NETERROR

;

We now de�ne the word COMPLETE to check the ncb command complete (CMD_CPLT)
ag. It will
return a TRUE when the function has completed. This word is provided so that an application may
test which of several possible NetBios commands has been honoured (see sections 4 and 5.2 for
a description of its use and section 9.2 for an example of its use).

: COMPLETE (NCB -- f)

CMD_CPLT C@ 255 = NOT

;

The �nal de�nition in this section is NERROR which is used in conjunction with the COMPLETE word.
It will check the return code (RETCODE) of a given ncb returning the NetBios return code, if the
function associated with the ncb has completed, otherwise it returns a -1.

: NERROR (NCB -- n)

DUP COMPLETE IF RETCODE C@ ELSE DROP -1 THEN

;

8.5 General Support

Here we de�ne a number of words for the general administration of the network. Most of these
commands would only be used by a supervisor or supervising software. These commands do not

11

have No-Wait variants, thus they all wait for the NetBios command to complete before returning
to the caller.

NET-RESET will Reset the network with the support for the given number of sessions and the given
number of outstanding commands using the given ncb.

: NET-RESET (#sessions #commands NCB --)

DUP >R NUM C! R@ LSN C! 0 R> 50 +NET

;

NET-CANCEL is used to Cancel a NetBios command. The NetBios command associated with
NCB1 is cancelled (removed from the command-pending list). Due to the way that the NetBios
system operates, it requires a second ncb to be used to issue the cancel command.

: NET-CANCEL (NCB1 NCB2 --) 53 +NET ;

The UNLINK word will disconnect the node from the \Remote Program Link". This is only used
when booting the system over a network.

: UNLINK (NCB --) DUP 112 +NET ;

Finally the NET-STAT word returns the current status of the network to the given bu�er (addr)
of a given maximum size (len1 bytes). Returning the number of bytes (len2) of actual data
received. This data is dependent on both the network hardware and the particular NetBios
implementation.

: NET-STAT (addr len1 NCB -- len2)

SWAP OVER LENGTH DUP >R ! DUP CALLNAME ASCII * SWAP C!

51 +NET R> @

;

8.6 Naming Support

In this section we de�ne the Forth words that will give the programmer access to the NetBios
\Naming" functions.

Firstly, the word (name) is de�ned. This word takes a counted string (s) as a symbolic name.
It will place the name in the given NCB's NAME �eld. This takes a �xed 16 character name, thus
(name) also pads out the �eld with zeros. Having copied the name into the NAME �eld, it will then
invoke the NetBios function given in n (either Add Name or Add Group Name). Notice that it
uses +NET to invoke the function, thus the system will wait for the name to be added to the local
name table before returning. This word forms the bases of both the ADD-NAME and ADD-GROUP

words.

: (name) (s NCB n --)

>R DUP NAME DUP 16 ERASE ROT COUNT ROT SWAP CMOVE

0 SWAP R> +NET

;

The word ADD-NAME is used to add an logical name to the list of logical names for this node. It
takes a counted string (s) and an NCB. It will add the name to the system, associating the name
with the ncb. Any command sent out using that ncb will be issued under the given name. You
must copy the ncb if you wish to post more than one (simultaneous) command under this name.

12

: ADD-NAME (s NCB --) 48 (name) ;

The ADD-GROUP command works in much the same way as the ADD-NAME command with the one
exception that the name added to the local node is a group name. Thus several di�erent nodes
may be known by the same name.

: ADD-GROUP (s NCB --) 54 (name) ;

The �nal word in this section is REMOVE-NAME. This will remove the name associated with the NCB
from the local name table. If the ncb is associated with a group name, the node is removed from
the group. The name is disassociated from the NCB, thus allowing the NCB to be associated with
another name.

: REMOVE-NAME (NCB --) 0 SWAP 49 +NET ;

8.7 Session Support

In this section, we provide words that allow the application programmer to access the session
handling facility of the NetBios.

Before we de�ne the words that the application programmer is to use, we �rst de�ne two words
that perform most of the operations. These words are internal to the interface and are not meant
to be used by the application programmer.

The �rst of these is (cname) which takes a counted string (s) and places it in the CALLNAME �eld
of the given NCB. As with the (name) word, this also pads the �eld out to 16 characters by adding
zeros. (cname) not only leaves the ncb address on the stack, it also places a 0 onto the stack to
be used as a null bu�er address. See the words PHONE and LISTEN to see how the word is used.

: (cname) (s NCB -- 0 NCB)

DUP CALLNAME DUP 16 ERASE ROT COUNT ROT SWAP CMOVE 0 SWAP

;

The second internal word is (len). This will simply place the given bu�er length (len) into the
LENGTH �eld of the given NCB without removing the ncb address from the stack.

: (len) (len NCB -- NCB)

SWAP OVER LENGTH !

;

Having de�ned the two supporting words, we can now go on to de�ne the words that the application
programmer will use to gain access to the NetBios session capability. As we have already likened
a session connection to a telephone connection, we use telephone-like words in our interface.

The word PHONE is used to establish a connection. This is similar to making a telephone call

where you give the name of the recipient as a counted string (s). If the call is being made to a
group name, only one member of the group will receive the call. The NetBios selects the group
member, a one-to-one connection is made with one of the group members. The particular member
is not known and is non-deterministic.

13

: PHONE (s NCB --) (cname) 16 -NET ;

The word LISTEN is similar to listening for a telephone call. You give the name of the node you
are waiting to hear from as a counted string (s). However, you will only hear calls from that node,
if another node is attempting to contact this name, the listen command will not register the call.
When a call is detected, a connection (session) is established on both nodes.

There is a special name of *" that will listen for a call from anyone. When a call is detected,
the session (connection) is established and the name of the caller is placed in the CALLNAME �eld
of the ncb.

: LISTEN (s NCB --) (cname) 17 -NET ;

The word HANGUP is used to disconnect the session. This is similar to someone hanging up the
telephone to break the connection. We use the same convention as is used for telephones in that
the caller is responsible for clearing the connection.

: HANGUP (NCB --) 0 SWAP 18 -NET ;

We now have the words that will allow one to set up a connection but we are still unable to transfer
data over this connection. The next two words provide this capability. The connection must be
established prior to any attempt to transmit data.

To transmit data over the connection (to source the data) we use the TX word. This takes a
bu�er (buff) of len bytes (the maximum bu�er size being 64 KBytes) and transmits it over the
connection. As this is a session connection NetBios provides a guarantee that the data will arrive.

: TX (Buff Len NCB --) (len) 20 -NET ;

To sink (receive) the data the RX word is used. We give the system a bu�er area (buff) with a
maximum size of len bytes where it can place the data when it is received. When data has been
received, the LENGTH �eld of the ncb will hold the actual number of bytes received. If the bu�er
is not large enough to hold all the data, the system will bu�er the remaining data internally and
report an error. Under these conditions an error code of 6 is placed in the RETCODE �eld of the
ncb. It is the responsibility of the application programmer to detect and act on this condition by
issuing another receive request.

: RX (Buff Len NCB --) (len) 21 -NET ;

The �nal word in this section is CALL-STAT which is used to obtain status information on the
connection (session) associated with the given NCB. It is given a bu�er (buff) of len1 bytes into
which it will place the current status. The CALL-STAT word will return the actual number of bytes
used (len2) by the status information. The status information returned by this word is partly
de�ned, however a large part of the data is dependent on the NetBios implementation.

: CALL-STAT (Buff Len1 NCB -- Len2)

SWAP OVER LENGTH DUP >R ! 52 +NET R> @

;

14

8.8 Datagram Support

This is where we develop the Forth words that will give the application programmer access to
the \Datagram" communication level provided by the NetBios. A datagram can be thought of
as a packet of up to 512 bytes on the network. Unlike session communication, there is no built-
in protocol associated with datagrams. The receiving node must be listening for an incoming
datagram, otherwise it will not receive it. The NetBios provides no guarantee that the datagram
will be delivered.

The �rst word we de�ne in this section is DTX, the Datagram Transmit function. This will take
an area of memory (buff) of len bytes in length (maximum size being 512 Bytes). This is sent,
as a single unit, to the indicated node (whose name is given as the counted string s).

Notice how this word uses (cname) to copy the destination node name into the CALLNAME �eld of
the ncb. The NIP is required to disregard the extra 0 that (cname) places on the stack. We use
(len) to copy the byte length into the LENGTH �eld of the ncb. We can make the NetBios call
with the -NET word.

: DTX (Buff Len s NCB --)

(cname) NIP (len) 32 -NET

;

The Datagram Receive function is provided by the word DRX. This is given an area of memory
to place the received data (buff) which is a maximum size of len bytes (maximum bu�er size is
512 bytes). This word will wait for an incoming datagram addressed to the name associated with
the ncb. On receiving a datagram, it will place as much data as it can in the bu�er returning the
actual number of bytes received in the LENGTH �eld of the ncb. Note that if the received datagram
was too large for the receiving bu�er, the bu�er is �lled, the remaining data is lost, and a return
value of 6 is given (in the RETCODE �eld). The name of the sending node is placed in the CALLNAME
�eld. See section 9.2 for an example of using datagrams.

: DRX (Buff Len NCB --) (len) 33 -NET ;

8.9 Broadcast Support

In this, the �nal part of the interface, we de�ne the words that provide access to the NetBios
\Broadcast" commands. A broadcast can be thought of as sending a datagram to everybody. If
you are not listening for a broadcast, you will miss it. Like the datagram it will not be bu�ered
for you. As with datagram support, we only need two words to provide broadcast support, one to
transmit and one to receive.

The �rst of these words is BTX, providing the Broadcast Transmit function. This takes the address
of the memory bu�er (buff) of len bytes in length (maximum size of 512 bytes). The data is then
transmitted to every node on the system.

: BTX (Buff Len NCB --) (len) 34 -NET ;

The second word required to provide broadcast support is BRX, providing the Broadcast Receive
function. As with DRX, the address of a receive bu�er is given (buff) with a maximum length of
len (maximum bu�er size is 512 bytes). When the system receives a broadcast message, it will
place up to len bytes in the bu�er loosing any additional data. The LENGTH �eld holds the actual
number of bytes received. The CALLNAME �eld will hold the name of the sending node. If more
than one Broadcast Receive is posted, they will all receive the same message.

15

: BRX (Buff Len NCB --) (len) 35 -NET ;

It should be noted that the words (netable), (neterror), pos, FIELD, (post), (net), +NET,
-NET, (name), (cname) and (len) are internal to the interface and should not be used when
programming applications with this package.

9 The \Net-Chat" Application

The following is an annotated source listing of the \Net-Chat" example application as described
in Section 5.2.

9.1 Memory Bu�ers

The �rst part of the application is to reserve the memory bu�ers that are going to be used. This
section not only reserves the memory but also de�nes words that allow easy access to this memory.

We are going to require �ve ncbs and bu�ers. We �rst reserve the space for the �ve ncbs (one
outgoing, four incoming). The number of bytes to reserve is calculated by multiplying the number
of bytes required for an ncb (ncb_size) by �ve. We then initialise this memory to zeros using
the ERASE word.

CREATE ncbs ncb_size 5 * ALLOT ncbs ncb_size 5 * ERASE

Thus the word ncbs will return the start address of a block of memory large enough to hold �ve
ncbs. We now de�ne a word NCB that take an ncb number and returns the address of the indicated
ncb from our table.

: NCB (n -- NCB) ncb_size * ncbs + ;

Now we do the same for the data bu�ers. This time the bu�ers are 60 bytes long and is given the
name buff, while the accessing word is called BUFF.

CREATE buff 60 5 * ALLOT buff 60 5 * ERASE

: BUFF (n -- buff) 60 * buff + ;

We now de�ne the word name that takes an ncb number and initialises the stack ready for a
NetBios call to the Datagram Receive function, placing the corresponding bu�er address (buff),
the maximum size of the bu�er (60) and the indicated ncb (NCB) on the stack.

: name (n -- buff 60 NCB)

DUP BUFF SWAP NCB 60 SWAP

;

9.2 Listening

In this section we de�ne the \Listening" part of the application. This code will post four Datagram
Receives to the NetBios and wait for one of them to be honoured. It will then display the name
of the sender and a one line message.

16

The �rst item to de�ne is the actor that is going to execute the code (CHAT-TASK). The actor is
de�ned now so as to indicate that all the code that follows (upto the CONSTRUCT word) will be
performed by the actor concurrently with the main system.

ACTOR CHAT-TASK

The �rst word we de�ne in the section is NET-LISTEN which simply posts four Datagram Receive

functions which will operate in unison. It should be noted that ncb 0 has been reserved for
outgoing messages.

: NET-LISTEN

5 1 DO

I name DRX

LOOP

;

When one of these Datagram Receive functions has been honoured, the system will execute the
NET-DISP word. This will scan through the ncbs to discover which of them has been honoured.
It will then display the name of the sender (taking it from the CALLNAME �eld) and the associated
message. Finally it re-posts the Datagram Receive command.

: NET-DISP

5 1 DO \ Scan through the incoming NCBs

I NCB COMPLETE \ Has the command been honoured ?

IF

I NCB CR

CALLNAME 16 0 DO \ Display the CALLNAME filed

DUP C@ ?DUP 0= IF LEAVE THEN EMIT 1+

LOOP DROP

." : " \ Display a name separator

I BUFF I NCB LENGTH @ TYPE \ Display the message

I name DRX \ Re-post the DRX

THEN

LOOP

;

The output from NET-DISP will be displayed in a small window at the top of the screen. The
following line de�nes the window to start at the top left of the screen, being 78 characters wide
and 5 lines high. The WITH-BORDER indicates that the window will have a line boarder displayed
around it. Finally the window will be called NET-WIN.

1 1 78 5 WITH-BORDER CREATE-WINDOW NET-WIN

The last word to be de�ned in this section is NET-GO. This is the word that the CHAT-TASK will be
asked to perform (by the GO word). It initialises the window and posts the initial four Datagram
Receive requests. It then enters into an in�nite loop waiting for one (or more) of the requests to
be honoured when it will call the NET-DISP word to display the message and re-post the receive
request.

: NET-GO

NET-WIN <WIN \ Open the window.

*WCLEAR \ Clear it

*TITLE" Net Chat " \ Give it a title

NET-LISTEN \ Post initial four DRX commands

17

BEGIN

STOP \ Wait for one to be honoured

NET-DISP \ Display the message & re-post

AGAIN

WIN>

;

The �nal act in this section is to indicate the completion of the code that is to be executed by the
CHAT-TASK actor. This also completes the de�nition of the actor. Any words de�ned from this
point on would not be accessible to the CHAT-TASK actor.

CHAT-TASK CONSTRUCT

9.3 Sending

In this section we de�ne the \Sending" part of the application. In reality this consists of one
de�nition. The word CHAT will ask the user to type in a one line message. It will then send the
message as a datagram to the group name \NET-CHAT", thus any node with a Datagram Receive

posted on the group name NET-CHAT will receive a copy of the message (including the sending
node).

Firstly, the word locates the outgoing message bu�er (bu�er 0). It then erases the bu�er making
sure no other message is stored there. It now displays a message asking the user to input the
message they wish to transmit. The message is read directly into the bu�er with a maximum of
60 characters in length:

78 Characters in the display line
�16 Maximum characters in user name
�2 Name/Message separator (\: ")
60 Total allowable size of message

The number of characters actually typed is taken as the size of the bu�er. The bu�er is sent to the
group name NET-CHAT via the outgoing ncb (ncb 0). Finally, the word waits for the Datagram
Transmit function to complete before returning to the user.

: CHAT

0 BUFF \ Find outgoing buffer

DUP 60 ERASE \ Erase buffer

CR ." Message: " \ Ask for the message

DUP 60 EXPECT \ Read in the message

SPAN @ " NET-CHAT" 0 NCB DTX \ Send the message

STOP \ Wait for NetBios to complete

;

9.4 Initialisation

In this part of the application, we provide the initilisation of the system. The word GO initialises
the system for use with the \Net-Chat" application as outlined in section 5.2.

The �rst part of the initialisation is to de�ne a word that is going to become the network error
handler for the application. This is a very simple word that simply ignores any errors. This
de�nition is required so that the INIT-CHATword can examine the return code and take appropriate
action. (The default action will cause the system to abort on an error.)

18

: NO-ERROR DROP ;

The next part of the initialisation process is coded into the word INIT-CHAT. This initialises the
network handling side of the system. Firstly, it replaces the standard error handling with our error
handling system (NO-ERROR). It will then ask the user to type in a unique name that it will use to
identify the user to the other uses of the system. It attempts to add the name to the network (Add
Name). If an error occurs a message is displayed and the user is asked to supply an alternative
name.

When the logical name has been established (on the outgoing ncb, ncb 0), the error handler is
reset back to the default. The NO-ERROR handler is only used to allow the word to extract the
error code and ask for another name if necessary.

The group name NET-CHAT is added to the network (on ncb 1). The information placed in the
ncb by the Add Group Name function is copied to the remaining incoming ncbs (2, 3 and 4).

: INIT-CHAT

'NETERROR @ \ Save the default error handler

['] NO-ERROR 'NETERROR ! \ Reset the error handler

BEGIN

CR ." Enter your name: " \ Ask for a name

0 BUFF DUP 1+ 16 EXPECT \ Read the name (max 16 chars)

SPAN @ SWAP C! \ Make buff a counted string

0 BUFF 0 NCB ADD-NAME \ Add name to Network

0 NCB NERROR

WHILE \ While error in Add-Name

CR ." Sorry, someone else is already using that name, try another."

REPEAT \ Repeat input sequence

'NETERROR ! \ Reset error handler to default

" NET-CHAT" 1 NCB ADD-GROUP \ Add the group name

1 NCB DUP DUP

2 NCB COPYNCB \ Copy the NCB data to NCB 2

3 NCB COPYNCB \ '' NCB 3

4 NCB COPYNCB \ '' NCB 4

;

The window for use by the OPERATOR actor is now de�ned to be 15 lines of 78 characters starting
at line 8, complete with a line boarder.

1 8 78 15 WITH-BORDER CREATE-WINDOW OP-WIN

Finally, the word GO is de�ned. This is the word that the user will type to initialise the \Net-Chat"
application.

The �rst action of GO is to call the INIT-CHAT word. Thus it asks for an logical name and initialise
the ncbs. GO will then clear the screen (CLEAR) and turn the hardware cursor o� (HWC-OFF) ready
for the windowing environment. It will then redirect the OPERATOR output to the OP-WIN window
(<WIN). Finally, the actor CHAT-TASK is sent the message (SEND") to initialise its window and listen
for and display incoming messages (NET-GO).

: GO

INIT-CHAT \ Initialise the Network

CLEAR \ Clear the screen

HWC-OFF \ Turn the hardware cursor off

OP-WIN <WIN \ Redirect output to the OP-WIN window

*WCLEAR \ Clear the window

19

*TITLE" Operator " \ Title the window

CHAT-TASK SEND" NET-GO " \ Set the CHAT-TASK listening

;

9.5 Close Down

In this, the �nal section of the application, we provide the code that will close down the application.
All applications should provide a graceful close down, especially when they are using the services
of some kind of server such as the NetBios.

There are a number of things we need to do to close down: stop the CHAT-TASK actor; remove
the unique name from the system; cancel any outstanding commands; resign from the NET-CHAT
group; tidy up the screen. The order in which these events occur is quite important. All of this
can be accomplished in the one Forth word, CLOSE-CHAT. This is the word that the user will type
when they wish to close or leave \Net-Chat".

Our �rst task is to force the CHAT-TASK actor to stop processing. This we do by forcing it to accept
a new task (via the MUST SEND" operation). We ask CHAT-TASK to close its window (WIN>) and
then to stop processing until further notice (HALT). Having stopped CHAT-TASK from receiving any
messages, we are now able to alter the status of the network. We �rst remove the unique name
from the name table (REMOVE-NAME). This provides us with a free ncb which we use to cancel
the Datagram Receive requests that CHAT-TASK would have posted (NET-CANCEL). Notice how any
task can cancel these requests as the NetBios is unaware of our tasking mechanism, thus does
not consider a NetBios request to be owned by any particular task.

We are no longer able to send a message as we do not have a unique name. We are no longer
able to see messages as CHAT-TASK is not running. We are no longer listening for messages sent
to the NET-CHAT group as we have just cancelled all such requests. Thus we are now in a position
to be able to resign our membership of the NET-CHAT group (REMOVE-NAME). Finally, we close the
operations window (WIN>) and re-establish the cursor (HWC-ON).

: CLOSE-CHAT

CHAT-TASK MUST SEND" WIN> HALT" \ Close NET-WIN and stop the task

0 NCB REMOVE-NAME \ Remove the outgoing unique name

1 NCB 0 NCB NET-CANCEL \ Cancel the DRX commands

2 NCB 0 NCB NET-CANCEL

3 NCB 0 NCB NET-CANCEL

4 NCB 0 NCB NET-CANCEL

1 NCB REMOVE-NAME \ Remove the group name

WIN> \ Close OP-WIN

HWC-ON \ Turn hardware cursor on

;

If the user wanted to restart the application, he would simply type GO and he would be back in
the application.

10 Acknowledgments

The work presented in this paper was preformed as a part of a research project supported by the
UK Science and Engineering Research Council with a CASE award (number B/88502911) and

20

Computer Solutions Ltd and documented in Knaggs (1993). I would like to thank Andrew Haley
of Computer Solutions Ltd. for giving me the idea and Bill Stoddart, my research supervisor, for
his gidance and for simply putting up with me.

References

Glass, B. (1989, January). Understanding NetBios. Byte, 301{306.

Ibm Corporation (1987, April). NetBios Application Development Guide. Ibm Corporation.

Knaggs, P. J. (1993, March). Practical and Theoretical Aspects of Forth Software Development.
Ph. D. thesis, University of Teesside. Available from the British Library.

Nine Tiles (1987, September). Superlink Reference Manual. Cambridge, UK: Nine Tiles.

Nine Tiles (1988a, February). SimpleNet User Guide. Cambridge, UK: Nine Tiles.

Nine Tiles (1988b, June). SimpleNetBIOS Reference Guide. Cambridge, UK: Nine Tiles.

Schwaderer, W. D. (1988, August). C Programmer's Guide to NetBIOS. Indianapolis: Howard
W. Sams & Company.

Tenenbaum, A. S. (1988). Computer Networks (Second ed.). London: Prentice Hall.

21

