
Literate Programming in Forth

Peter Knaggs

University of Paisley

High Street,

Paisley. PA1 2BE

Scotland.

pjk@paisley.ac.uk

November 4, 1995

Abstract

We look at Donald Knuth's concept of \Liter-
ate Programming," investigating exactly what
it is and how it is used to assist conventional
programmers. We then ask what lessons we
can learn from this idea and if it is possible to
apply them to Forth.

We look at the alterations needed to the sys-
tem and/or Forth to allow us to take advan-
tage of this system. Indeed do we obtain all of
the advantages that Knuth claims.

Finally some examples of Forth coding tech-
niques are given allowing us to compare the
more traditional techniques with Knuth's sys-
tem.

1 What is Literate Pro-

gramming

Literate programming was created by Don-
ald Knuth during the development of his TEX
typesetting system. It is the combination of

documentation and source together in a fash-
ion suited for reading by human beings. In
general, literate programs combine source and
documentation in a single �le, referred to as a
WEB. Literate programming tools then parse
the �le to produce either readable documenta-
tion or compilable source.

All the original work revolves around a partic-
ular literate programming tool called WEB.
Knuth says [Knu92]:

The philosophy behind WEB is that
an experienced system programmer, who
wants to provide the best possible doc-
umentation of his or her software prod-
ucts, needs two things simultaneously: a
language like TEX for formatting, and a
language like C for programming. Neither
type of language can provide the best doc-
umentation by itself; but when both are
appropriately combined, we obtain a sys-
tem that is much more useful than either
language separately.

The structure of a software program may
be thought of as a web that is made up
of many interconnected pieces. To docu-

1

ment such a program we want to explain
each individual part of the web and how
it relates to its neighbours. The typo-
graphic tools provided by TEX give us an
opportunity to explain the local structure
of each part by making that structure vis-
ible, and the programming tools provided
by languages such as C or Fortran make
it possible for us to specify the algorithms
formally and unambiguously. By combin-
ing the two, we can develop a style of pro-
gramming that maximizes our ability to
perceive the structure of a complex piece
of software, and at the same time the doc-
umented programs can be mechanically
translated into a working software system
that matches the documentation.

Knuth's original WEB tool provided a meta-
language that allowed the author to combine
TEX typesetting instructions and PASCAL
program instructions. Two tools where pro-
vided, one converted the WEB �le into a TEX
�le, which could in turn be typeset via Knuth's
TEX typesetting software. The PASCAL in-
structions where printed stylistically, allowing
the reader to quickly identify keyword, vari-
ables, etc. The order of the WEB �le is not
e�ected.

The second tool extracts the PASCAL in-
structions from the WEB �le, automatically
re-arranging and expanding the chunks into
the correct order necessary for the compiler.
The resulting �le is compiler-ready and is not
structured for human consumption.

There are now a large number of WEB tools
for speci�c languages, these include Ada,
APL2, C and C++, Fortran, Lisp, Maple,
Modula-2, Pascal and Scheme. These tools
use a number of di�erent typesetting engines,
including TEX and LaTEX, HTML, ro� and
unix `man' page format. There are a few lan-
guage/typesetter independent tools [Tho95],

most notably Norman Ramsey's noweb and
the CLiP tool by Eric W. van Ammers and
M. R. Kramer. Indeed Eric van Ammers
claims [vAK93]:

I have proposed for many years that pro-
gramming has nothing to do with pro-
gramming languages, i.e., a good pro-
grammer makes good programs in any
language (given some time to learn the
syntax) and a bad programmer will never
make a good program, no matter the lan-
guage he uses.

The idea of a literate program as a text
book should be extended even further. I
would like to see a literate program as an
(in)formal argument of the correctness of
the program.

Thus a literate program should be like a
textbook on mathematics. A mathemat-
ical textbook explains a theory in terms
of lemma and theorems. But the proofs
are never formal in the sense that they
are obtained by symbol manipulation of
a proof checker. Rather the proofs are by
so called \informal rigour", i.e., by very
precise and unambiguous sentences in a
natural language.

The CADiZ tool [YSE94] takes this idea fur-
ther in that it allows one to formally specify
and derive an Ada program by semi-automatic
means. The �nal document being a full de-
scription of the process. A tool is provided to
extract the Ada program code into a compiler
ready form.

2

2 How does this di�er

from verbose comment-

ing

There are three distinguishing characteristics
of literate programming. In order of impor-
tance, they are: exible order of elaboration;
automatic support for browsing; and type-
set documentation, especially diagrams and
mathematics.

2.1 Flexible order of elaboration

This enables the author to divide the source
program into chunks and write the chunks in
any order, independent of the order required
by the compiler. In principle, you can choose
the order best suited to explaining what you
are doing. More subtly, this discipline encour-
ages the author of a literate program to take
the time to consider each fragment of the pro-
gram in its proper sphere, e.g., not to rush
past the error checking to get to the \good
parts." In its time and season, each part of
the program is a good part.

The reordering is especially useful for encap-
sulating tasks such as input validation, error
checking, and printing output �t for humans
| all tasks that tend to obscure \real work"
when left inline.

2.2 Automatic support for
browsing

Tools are available for manipulating literate
programs, including the automatic genera-
tion of a table of contents, index, and cross-
reference of the program. Cross-reference
might be printed, so that you could consult an
index to look up the de�nition of an identi�er

`foo'. With good tools, you might get a printed
mini-index on every page if you wanted. Or
if you can use a hypertext technology, cross-
referencing might be as simple as clicking on
an identi�er to reach its de�nition.

Indexing is typically done automatically or
`semi-automatically', the latter meaning that
identi�er de�nitions are marked by hand. Dili-
gently done semi-automatic indexes seem to
be best, because the author can mark only the
identi�ers he or she considers important, but
automatic indexing can be almost as good and
requires no work. Some tools allow a mix of
the two strategies.

2.3 Typeset documentation

Whilst you may not use diagrams or mathe-
matics often it would be very di�cult to de-
scribe some systems without them. Diagrams
and tables are very useful for summarising
ideas etc.

Literate programming tools work with a num-
ber of di�erent typesetting engine, normally
TEX, ro� or HTML but rather unusually
WYSIWYG is not generally supported. This
is because the data formats used in WYSI-
WYG products are proprietary, and they tend
to be documented badly if at all. They are
subject to change at the whim of the manufac-
turer. These conditions make it nearly impos-
sible to write tools, especially tools that pro-
vide automatic indexing and cross-reference
support.

People use TEX, ro� and HTML because
free implementations of these tools are widely
available on a variety of platforms. TEX and
HTML are well documented, and TEX and ro�
are stable. TEX is the most portable, it was
also developed by Donald Knuth as a literate
program [Knu86], thus it is not surprising that

3

the �rst literate programming tools used TEX
as there typesetting engine.

3 Relating it to Forth

To see how these ideas can be of use to Forth,
we look at the bene�ts they bring to tradi-
tional languages and see how these may be
transfered to Forth. Knuth claims that liter-
ate programming increases the maintainability
and quality of software by improving its factor-
ing and readability, leading to the inevitable
productivity and salary increase.

Factoring: With �le based languages it is
quite common to see a single function def-
inition of 80 lines or more. This is nor-
mally because the function is required to
hold the full text of the algorithm it is im-
plementing. Whilst it is possible to break
the algorithm down further the overhead
associated with de�ning the relevant func-
tions outweighs its usefulness.

To overcome this Knuth introduced a de-
composition facility into his tool. It is
this that allows one to break up the def-
inition into its constituent parts without
the need of de�ning new functions. Thus
we are able to decompose the algorithm,
discussing both it and its implementation
in a more natural way, with the various
parts being de�ned and discussed in their
natural place. A tool is provided to col-
lect the various parts together and recon-
stitute them into the correct order.

Readability: By allowing us to use a more
natural literary style of writing to de-
scribe the application we are free to dis-
cuss the design decisions and constraints
that have lead to certain intricacies in the

implementation. Presenting this discus-
sion in book form allows us to break it up
into discrete sections.

We are thus able to use the decomposition
capability built into the meta-language
to provide multiple levels of abstraction.
With the book being broken into parts or
chapters. We could start with a highly
abstract description of the software work-
ing in more detail as we move through the
book1.

Knuth believes that creating a program
should be viewed as creating a work of
art. The result will automaticallybe more
readable as the authors intentions will be
laid out in much more detail. The reader
will have seen the development of the soft-
ware through its description. Such de-
scriptions should be of interest to any pro-
grammer. How often have you wanted to
have a quick look at the code just to see
how he did that little bit?

Maintainability: Better factoring will lead
to more well thought out development.
The literary style of presentation allows
us to not only lay out the software better,
but to discuss the algorithms and their in-
tricacies in detail. When an alteration is
required it should be fairly obvious which
part, chapter or section of the book will
need to be altered.

As the system has been fully described
we can read the intention of the original
author. We are then required to re-write
the relevant section of the book to reect
the desired alteration. This technique is

1With the development of object-orientedprogram-
ming and intelligent agents it would be possible to in-
troduce the agents as characters in a novel, developing
their character through the novel until eventually we
know all of the details of the characters (agents) and
their relationships.

4

not of much use for run of the mill de-
bugging, but is much more useful for long
term maintenance.

Quality: As we are now dealing with a doc-
ument rather than a program we can
apply more normal quality control tech-
niques. Tools allow us to extract program
code from the document thus we are also
able to apply normal programming qual-
ity control techniques.

With better factoring and documentation
it is inevitable that we will be able to un-
derstand it better. Along with this under-
standing comes improved maintainability.
If the software is easier to maintain, is
better documented and better structured,
this has to lead to better quality software.
This has a knock on e�ect in that a better
quality program will command a better
price and thus your salary will improve.

4 What lessons can we

learn?

1. The underlying philosophy of Forth
[Bro84] means that our programs are well
factored. Forth's `de�ne before use' rubric
forces us to use a bottom-up approach
to our system development. By adopt-
ing the re-organising aspect of the meta-
language we are able to adopt the top-
down or middle-out approaches.

2. To obtain the bene�ts of Knuth's system
he relies heavily on a change of empha-
sis. Moving away from program devel-
opment, to the development of a main-
tenance manual for later use. The pro-
gram just happens to appear as a side
e�ect of developing the manual. It goes
without saying that the vast majority of

Forth code is very badly document, if at
all. Adopting Knuth's change of emphasis
when writing Forth software will bring the
same bene�ts, primarily readability and
maintainability.

It is often said that Forth, like C, is a \write
only language." The adoption of literate pro-
gramming has done much to make C a read-
able language, and as a consequence made it
more maintainable [KL93]. If literate pro-
gramming can transform a cryptic notation
such a C, it must surely be able to make Forth
more readable, and thus more maintainable.

5 Comparison

In order to compare Literate Programming
with other, more traditional, methods of pro-
gramming we look at a sample fragment of
code using the traditional and new methods.
The code chosen is a small fragment (the
memory management section) from a network
\chat" application [Kna95] written a few years
ago. We �rst view this as a traditional Forth
block (Appendix A), then as a source �le (Ap-
pendix B) and �nally in a simple example of
literate programming (Appendix C).

5.1 The Forth Block

In Appendix A we see the code as a tradi-
tional Forth screen, or block. The �rst line
is an index line, used to give a general ti-
tle to the block, this has lead to the practice
of collecting related de�nitions into the same
block or sequence of blocks. In the example
we have the de�nitions relating to the memory
management of the application. This practice
makes it easy to �nd and concentrate on spe-
ci�c areas of code for debugging purposes.

5

One of the drawbacks of using blocks is that
the space is limited and one is tempted to shoe-
horn the code and not document it. For this
reason the \shadow" block was developed to
allow documentation of the code presented in
the associated block (as shown in the exam-
ple). Normally the two blocks are printed side
by side, thus making it obvious which code
is being referred to in the shadow block. This
provides us with an extremely useful documen-
tation technique, yet it is surprising how many
seasoned Forth programmers do not bother
with the shadow block, thus increasing the dif-
�culty of maintenance.

5.2 The File

We now see the same example as a source �le
(Appendix B). In order to keep some of the ad-
vantages of source blocks it is common to split
a source �le into a number of pages [Pel88].
As with the source block we see the �rst line
has a summary describing the intention of the
page. We can collect related de�nitions into a
single source page.

The use of a �le does release us from the space
constraints of the block. This means that we
no longer need to cramp the code and we can
now include comments with our code much
more readily. This can be seen quite clearly
with the de�nition of ncbs where a single line
of code has been split into three lines, each of
which has an associated comment.

Source �les do however have their drawbacks.
As is now able to make a de�nition that would
not �t on a single source block, it is possible to
lose the good factoring that is a hall-mark of
a well written Forth program. As with other
�le based languages it is up to the programmer
to include documentation, he may include any-
thing from a large amount of comments to non
at all. It is surprising to see how comment-free

source �les are. This problem is shared with
other languages and was one of the seeds that
gave rise to the development of literate pro-
gramming.

5.3 Literate Programming

Finally, Appendix C shows the code as it
would appear, as a section of a book (say
1.2 Memory Handling), under literate pro-
gramming. The book would make up a full
description of the application, presenting, in a
simular form, all of the application code.

The comments, or commentary as we should
now call it, can be clearly distinguished from
the program code. This allows us to mark out
the di�erence between a reference to a vari-
able or de�nition from a general concept in
the commentary.

As with the previous systems, we are able to
collect all of the code relating to a single topic
into a single section. Unlike the previous sys-
tems, we can also distribute code (say initiali-
sation code) throughout the document (via the
meta-language) whichever is more useful to us.

As we are using �les, we still have the draw-
back that a very long de�nition could be given.
This is overcome by the philosophy of liter-
ate programming which promotes the use of
good factoring of problems. The decomposi-
tion mechanismwas provided explicitly to help
with the factoring of complex algorithms. It
should be noted that we have not used the
decomposition capabilities in this extract as a
well written Forth program should not need
them.

6

6 Conclusions

We have seen how Knuth's \Literate Program-
ming" system can increase the maintainability
and quality of software by improving its factor-
ing and readability. This is achieved by a sim-
ple change of emphasis from the production of
software to the production of documentation.

Can we apply these ideas to Forth? Yes, al-
though not by simply adopting the change of
emphasis. In order to assist in this change of
emphasis Knuth had to introduce a decompo-
sition mechanism into his system (via a meta-
language). As Forth is well disposed to decom-
position, via factoring, it would appear that
we do not need to adopt this side of the sys-
tem.

There is another aspect of the meta-language
that is just as important to the successes of
the system, this is the ability to move chunks
of code around to suite the documentation.
Adding such a facility to Forth would free us
from the bottom-up approach imposed by the
`de�ne before use' nature of the dictionary. Al-
lowing us to use the top-down or middle-out
approaches to software development.

With the reordering aspect of the meta-
language implemented we are now in a posi-
tion to make the change of emphasis proposed
by Knuth. There is no reason to suppose the
advantages of using this approach would not
apply to Forth. Thus it would be possible to
improve the readability, maintainability and
quality of Forth programs. This would natu-
rally lead on to an increase of our pleasure in
programming, and as the quality of the soft-
ware has improved an increase in our salary.

It is interesting to note how one of the ma-
jor claims for literate programming is that it
provides imperative languages with a usable
factoring mechanism. Something which is fun-

damental to the basic design of the Forth lan-
guage.

References

[Bro84] Leo Brodie. Thinking Forth. Pren-
tice Hall, 1984.

[KL93] Donald E. Knuth and Silvio
Levy. The CWEB System of Struc-
tured Documentation (Version 3.0).
Addison-Wesley, 1993.

[Kna95] Peter Knaggs. Using IBM's netbios
from Forth. Journal of Forth Appli-
cation and Research, 1995. Accepted
for publication.

[Knu86] Donald E. Knuth. TEX The Program,
volume B of Computers and Typeset-
ting. Addison-Wesley, 1986.

[Knu92] Donald E. Knuth. Literate Pro-
gramming. Center for the Study of
Language and Information, Stanford
University, 1992. A Collection of pa-
pers on Literate Programming.

[Pel88] Stephen Pelc. Text �le syntax
for screen �le users. In euro-
FORML'88 Conference Proceedings,
pages 171{175, MPE Ltd, 133 Hill
Lane, Southampton SO1 5AF, UK.,
September 1988.

[Sew89] Wayne Sewell. Weaving a Program:
Literate Programming in WEB. Van
Nostrand Reinhold, 1989.

[Tho95] Dave
Thompson. Frequently asked ques-
tions. comp.programming.literate
Usenet newsgroup, 1995.

7

[vAK93] E. W. van Ammers and M. R.
Kramer. The CLiP style of literate
programming. (submitted for publi-
cation), 1993. available via anony-
mous ftp from the CLIP directory of
sun01.info.wau.nl.

[YSE94] Literate formal development of Ada
from Z for safety critical applica-
tions. In SAFECOMP'94 Confer-
ence Proccedings. York Software En-
gineering, 1994.

8

A Screen

1 (NETCHAT - Reserve Memory PjK 10MAY90)

2

3 : STRING WORD C@ 1+ ALLOT ;

4 CREATE NET-CHAT BL STRING NET-CHAT

5

6 CREATE ncbs ncb_size 5 * ALLOT ncbs ncb_size 5 * ERASE

7 CREATE buff 60 5 * ALLOT buff 60 5 * ERASE

8

9 : NCB (n -- a) ncb_size * ncbs + ;

10 : BUFF (n -- a) 60 * buff + ;

11

12 : name (n -- a n NCB) DUP BUFF SWAP 60 SWAP NCB ;

13

14

15

16

1 This screen will reserve the memory buffers to be used.

2

3 It first defines the word STRING to compile a counted string.

4 The word NET-CHAT is then defined as a counted string.

5

6 Memory is reserved for 5 NCBs (one outgoing, four incoming)

7 Memory is also reserved for 5 buffers (of 60 chars each)

8

9 NCB returns the address of NCB number n.

10 BUFF returns the address of text buffer n.

11 A precondition for these operations is that 0 <= n < 5

12

13 The word name is defined to provide the parameter information

14 for a Datagram Receive on a given buffer number.

15

16

9

B File

\ Page 3: NETCHAT - Reserve Memory

\ Last Modified by Peter J. Knaggs 10-May-90

\ In this page we reserve the memory buffers used by the NetChat application.

\ We also define words to provide easy access to these buffers.

\ We start be defining a word (STRING) that will allow us to compile a

\ counted string literal, which we go on to use to define the common name

\ used in the application.

: STRING (--)

WORD C@ 1+ ALLOT

;

\ The word NET-CHAT is then defined as a counted string.

CREATE NET-CHAT BL STRING NET-CHAT

\ Memory is reserved for 5 NCBs (one outgoing, four incoming)

\ Memory is also reserved for 5 buffers (of 60 chars each)

CREATE ncbs \ Define the base area

ncb_size 5 * ALLOT \ Reserve space for five NCBs

ncbs ncb_size 5 * ERASE \ Clear the memory like a good boy

CREATE buff \ Define the base address

60 5 * ALLOT \ Reserve space for five buffers

buff 60 5 * ERASE \ Clear the memory

\ We now define two words NCB and BUFF to return the address of the given

\ ncb or buffer. They take one item from the stack which must be between

\ 0 and 4 (inclusive), giving access to five ncbs or buffers.

: NCB (n -- a)

ncb_size * ncbs + \ NCBs are ncb_size characters long

;

: BUFF (n -- a)

10

60 * buff + \ Buffers are 60 characters long

;

\ Finally (for this page) we define a new word name to provide the

\ parameter information for a Datagram Receive request on a given buffer.

: name (n -- a n NCB)

DUP BUFF SWAP 60 SWAP NCB

;

11

C Literate Program

The �rst part of the application is to reserve the memory bu�ers that are going to be used.
This section not only reserves the memory but also de�nes words that allow easy access to this
memory.

We are going to require �ve ncbs and bu�ers. We �rst reserve the space for the �ve ncbs
(one outgoing, four incoming). The number of bytes to reserve is calculated by multiplying
the number of bytes required for an ncb (ncb_size) by �ve. We then initialise this memory
to zeros using the ERASE word.

CREATE ncbs \ De�ne the base area
ncb_size 5 * ALLOT \ Reserve space for �ve ncbs

ncbs ncb_size 5 * ERASE \ Clear the memory like a good boy

Thus the word ncbs will return the start address of a block of memory large enough to hold
�ve ncbs. We now de�ne a word NCB that take an ncb number (n) and returns the address
(a) of the indicated ncb from our table.

: NCB (n { a)
ncb_size * ncbs + \ ncbs are ncb_size characters long

;

Now we do the same for the data bu�ers. This time the bu�ers are 60 bytes long and is given
the name buff, while the accessing word is called BUFF.

CREATE buff \ De�ne the base address
60 5 * ALLOT \ Reserve space for �ve bu�ers

buff 60 5 * ERASE \ Clear the memory

: BUFF (n { a)
60 * buff + \ Bu�ers are 60 characters long

;

We now de�ne the word name that takes an ncb number (n and initialises the stack ready for
a NetBios call to the Datagram Receive function, placing the corresponding bu�er address
(bu�), the maximum size of the bu�er (60) and the indicated ncb (NCB) on the stack.

: name (n { bu� 60 NCB)
DUP BUFF SWAP NCB 60 SWAP

;

12

