Towards a Formal FORTH

Peter J. Knaggs
Department of Computing Science,
University of Paisley, High Street,

Paisley, Scotland.

pjk@cs.paisley.ac.uk

Monday 272 September 1993

Abstract

Over the last couple of years several papers have been presented
attempting to bring formal methods to FORTH, or applying formal
methods to FOrRTH. This paper brings together many of these ideas
and suggests a method by which they could be integrated into a sin-
gle formally specified and implemented FORTH programming environ-
ment.

Much of the theoretical work described in this paper exists in some
form. However, the proposed integration of these theoretical ideas has
not been investigated any further than this paper.

1 Introduction

Over the last three years or so we have seen several papers attempting to bring
the worlds of formal methods and FORTH together. Papers have appeared
on the initial investigation into the specification of the FORTH Integrated
Development Environment (IDE) [1,2]; to a stack based type theory (suitable
for FOrRTH) [3-9].



Several papers have appeared in the formal methods world that relate to
FORTH, although the authors may not consider this so. For example, in [10]
Spivey describes a simple real-time kernel with a co-operative round-robin
scheduler. He goes on to describe the simple prioritised interrupt system
provided by the kernel'. Indeed this is a good description of FORTH’s Co-
operating multi-tasking system. The scheduler is described in sufficiently
abstract terms that most, if not all, current FORTH schedulers would meet
it requirements.

In [11] Bowen provides a formal description of the Motorola M6800 micro-
processor. The intention was to provide a basis for formal proof of software
developed for this processor. Bowen says “more complicated and modern mi-
croprocessors such as the 68000 family could be specified in a similar manner.
However such processors would require a larger document and more work in
order to cover them fully.” The FORTH based processors (such as the F-
RISC or Dolphin processors) would make a particularly good processor for
such a specification, as it implements the FORTH abstract machine directly
in silicon.

1.1 Type Checking

There are currently two teams developing formal type checking systems for
FORTH, one at the University of Tartu and the other at the University of
Teesside. Although these teams are working in the same area, and communi-
cate with each other, they are approaching the problem in two very different
ways.

Jannus Poial’s paper [3] was the first to show a formal typing system for
ForTH. Although the work was still incomplete it sparked off an interest at
Teesside leading to our paper [6]. After continued work by both teams we
have developed two very different typing algebras. The most recent descrip-
tion of which can be found in [9].

Tt should be noted that a simple abstract model similar to the one presented in [10]
could provide a means of standardising the multi-tasking aspect of FORTH. This topic
was not covered by the ANSI Standard due to its complexity. However, a simple abstract
model that does not place any restrictions on the scheduling algorithm, yet provides for
the majority of algorithms should be acceptable.



At Teesside we have implemented a version of the type algebra in SML ([8]),
and are working on extending Mitch Bradley’s SunFORTH to include type
checking, without detracting from the FORTH’s flexibility. Using type check-
ing we are able to identify programming errors at compile time, rather than
having to track down spurious run time errors.

The ANSI Standard’s concentration on portability has introduced many new
data types (and pointers). This matches well with the idea of checking for
the abuse of such types.

1.2 Formal Basis

At Teesside, we investigated the idea of providing a formal basis for the
specification of the FORTH IDE. Our initial thoughts where presented in [1]
and later in a more complete form in [2].

Even with this formal basis it was not possible to conduct proofs due to the
lake of stack typing?. It was at this point our investigations were suspended.
When Poial published his work on a type theory suitable for stack based
languages [3] he presented us with a method for overcoming the this problem.

Although we have since concentrated our efforts into developing our own type
algebra, we now feel that it should be possible to generate a formal basis for
ForTH. The idea being that one would take a specification, and refine it
into a FORTH implementation. Using the formal base it should be possible
to prove that the implementation has the same properties as the original
specification, and is therefor a true implementation of that specification.

1.3 Formal Methods

The Formal Methods world has been looking for a way to develop embedded
software that can be proven to work. York Software Engineering and the

2In would be possible, however the specification would have to be at such a low level
of abstraction that it would be too time consuming for sufficiently little result.



Defence Research Agency (DRA)? have recently released a system known as
SPARK, a method for deriving correct ADA programs from Z specifications.

The Open Systems Federation (OSF) and the DRA are currently attempt-
ing to develop an ADA ‘producer’ for their ANDF intermediate language
technology. This compiler is being specified using the RSL formal notation.
The idea being that one could use the RAISE method to derive an ADA
implementation of a formal specification and prove that it holds the same
properties as the original specification.

2 Proposal

In this section we present a project in which the whole FORTH community
could take a part. This is a large project and could take a long time to come
to fruition. There may be several research projects in the idea presented
here.

2.1 Outline

The project is to develop a formal FORTH IDE similar to the OSF/DRA
ADA system. This would allow one to specify a problem. And using a known
method (such as RAISE) derive a FORTH program that can be proven to be
a correct implementation of that specification.

This would start with a formal specification of a stack processor, probably an
existing one, or better yet one still in the design stage. Having developed this
specification, it should be possible to develop a full ANSI standard FORTH
system for it, complete with a formal programming model.

The idea is to provide the formal support for embedded applications. One
could develop a formal specification of an application. This specification
could then be refined, using the formal model, into a FORTH program. As the

3York Software Engineering is an offshoot of the University of York. The Defence
Research Agency was previously known as the Royal Signals and Radar Establishment
(RSRE) at Malvern.



FORTH system is formally defined we can prove that the resultant program
is a true implementation of the original specification.

This project could be achieved in the following way:

1. Develop a formal model of a simple embedded micro-controller.

2. Develop a model for a simple ANSI Standard ForTH IDE. This en-
vironment should be formally specified and proven to be complete,
consistent and compliant with the ANSI Standard.

3. The ForTH IDE should be implemented, and proven to meet with its
specification.

2.2 Argument

Although attempts have been made at specifying hardware before (re Viper),
in this project we propose using an existing (or forthcoming) embedded
micro-controller. The reasoning behind this, is that the technology already
exists, and we are interested in how to best use this technology.

The flexibility of FORTH makes a formal model slightly more difficult than
for other languages, however, the underlying abstract machine is particularly
well suited for formal specification. With the addition of the type algebra we
feel that this is now possible. Such a formal IDE underpinned by a specified
micro-controller would make it possible to prove that the full system is a true
implementation of the original specification.

This is about as far as we can go before having to specify and prove hard-
ware! The failure of the Viper project [12-14] shows this to be a difficult,
if not impossible, task. However given some of the new hardware compila-
tion techniques being developed by the Programming Research Group at the
University of Oxford this may become easier in the future [15].



3 Summary

Over the last couple of years papers have appeared on specification of the
FortH IDE; to stack based type-theories. We have looked at some of this
work, and some of the work coming from the Formal methods/Safety critical
systems people. This was found to be not only applicable to FORTH, but to
have a similar intent.

We looked briefly at Spivey’s description of a simple FORTH-like real-time
kernel complete with a co-operative round-robin scheduler, and at Bowen’s
specification of the Motorola 6800. This proves that not only is the FORTH
abstract machine well suited for formal specification, but it would be of
interest to Formal methods/Safety critical practitioners. As there are FORTH
engines that implement the abstract machine directly in silicon we could take
such a specification all the way down to the processor’s instruction set (and
possible even further).

We went on to present a project that would bring the different ideas together.
The project is outlined by means of a proposal that we (the FORTH com-
munity) develop a formal FORTH IDE such that one can use a formal model
to derive a FORTH implementation of a specification. It should be possible
(using the formal model) to prove that the FORTH implementation holds the
same attributes as the original application’s specification, and is therefor a
true implementation of that specification.

Providing a complete embedded programming environment would make FORTH
a more attractive target language. As the IDE has been developed to a stan-
dard and has been proven, one need only concentrate on the problem at hand
and not on the underlying environment as is currently the case.

References

[1] Bill Stoddart. Specification & Optimisation. In Proc. EuroFORMIL
Conf., September 1988.

[2] Peter J. Knaggs and Bill Stoddart. Formal FORTH. In Proc. Rochester
FortH Conf. on Automated Instruments, pages 50-55, June 1991.



3]

[4]

[10]

[11]

[12]

[13]

[14]

Jannus Poial. The algebraic specification of stack effects for FORTH
programs. In Proc. FuroFORMIL Conf., October 1990.

Jannus Poial. Multiple stack effects of FORTH programs. In Proc. Fu-
roFORMIL Conf., October 1991.

Peter J. Knaggs and Bill Stoddart. The Cell Type. In Proc. Rochester
FortH Conf. on Automated Instruments, pages 55-57, June 1991.

Bill Stoddart and Peter J. Knaggs. Type inference in stack based lan-
guages. In Proc. FuroFORML Conf., October 1991.

Bill Stoddart and Peter J. Knaggs. The (almost) complete theory of
FoRrTH type inference. In Proc. FuroFORMIL Conf., September 1992.

Bill Stoddart. Implementation of the FORTH type checker. In Proc.
FEuroFORML Conf., September 1992.

Bill Stoddart and Peter J. Knaggs. A type signature algebra for stack
based machines. Formal Aspects of Computing, 5(4):289-98, August
1993.

J. Michael Spivey. Specifying a real-time kernel. I[FEFE Software, pages
21-28, September 1990.

Jonathan P. Bowen. The formal specification of a microprocessor in-
struction set. Technical Monograph PRG-60, Oxford University Com-
puting Laboratory, 11 Keble Road, Oxford, UK, January 1987.

D. H. Kemp. Specification of Viperl in Z. RSRE Memorandum no. 4195,
Royal Signals and Radar Establishment, Ministry of Defence, Malvern,
UK, October 1988.

D. H. Kemp. Specification of Viper2 in Z. RSRE Memorandum no. 4217,
Royal Signals and Radar Establishment, Ministry of Defence, Malvern,
UK, October 1988.

Donald MacKenzie. Burden of proof goes to trial. The Time Higher
Education Supplement, March 5 1993.



[15] Brain L. Thompson. Hardware compilation as an alternative computa-
tion architecture. MSc. Thesis, School of Computing and Mathematics,
University of Teesside, Borough Road, Middlesbrough, Cleveland, TS1
3BA, UK, August 1991.



