Formal Aspects of Computing (1992) 3: 1-000
© 1992 BCS

Type Inference in Stack Based
Languages

Bill Stoddart and Peter J. Knaggs

School of Computing and Mathematics, University of Teesside,
Middlesbrough, Cleveland, U.K.

Keywords:Formal Aspects, Stack Based Languages, Semantic Model Language,
Algebras, Type Inference, Forth

Abstract. We consider a language of operations which pass parameters by means
of a stack. An algebra over the set of type signatures is introduced, which allows
the type signature of a program to be obtained from the type signatures of its
constituent operations.

Although the theories apply in principle to any stack based language, they have
been evolved with particular regard to the proposed ANSI Standard Forth lan-
guage, which is currently implemented in a type free manner. We hope this work
will stimulate an interest in Forth amongst those applying algebraic techniques
in software engineering, and we hope to lay the theoretical foundations for im-
plementing practical type checkers to support Forth.

1. Introduction

Stack based languages are important both as intermediate target languages for
compilers and as application languages in their own right (Forth [Bro87], Reverse
Polish Lisp [Wic88], Postscript etc).

The formalisms in this paper have been evolved with particular regard to
Forth. Forth is an unusual “language” in that it is based on a mapping between
words (as text strings) and operations. The meaning and syntactic form of the
language is captured in the semantics of the operations, which provide a low
level stack based architecture and also perform all system functions including

Correspondence and offprint requests to: Bill Stoddart, School of Computing and Mathematics,
University of Teesside, Middlesbrough, Cleveland, TS1 3BA, UK. (Email: bill@scm.tees.ac.uk)

2 Bill Stoddart and Peter Knaggs

the parsing of input text, text interpretation, compilation, error reporting, and
operating system functions such as multi-tasking (albeit in a simple fashion).

Forth also has some importance as an application language. Some chip man-
ufacturers produce high speed micro controllers optimised for running Forth (for
example the Harris RTX2000); IBM released its first Forth product, IBM CAD-
FORTH, in 1991; three of the four telescopes carried by the most recent flight
of the Columbia space shuttle were controlled by Forth based systems; Hewlett
Packard have used Forth as the implementation language for their top end cal-
culators which combine symbolic and numeric processing; all Sun systems have
a boot ROM coded in Forth, and Forth now has a draft ANSI standard [ANS91].

Although Forth is always implemented in a type free manner (i.e. with no
type checking at all), Forth programmers must keep track of the types they are
using and select appropriate operations for these types if their program is to
perform correctly. In this paper we show that type inference for a stack based
language is not difficult to formalise, and can deal with multi-typed and type
free operations as these are used in Forth.

We consider Forth as a “language” of “words” which are associated with op-
erations that obtain input arguments from a stack and return output arguments
to the same stack.

The types of these arguments are specified by a type signature. We write

ret

a b — c to represent the signature of an operation that requires two input
arguments, of types a and b, and returns one argument of type c¢. For both
input and output arguments the top of the stack is shown to the right.
ret
Suppose an operation with type signature a b — ¢ is followed by an opera-

ret

tion with type signature d ¢ — a a. We write

(abic)(dciaa)

to denote the combined signature of the first operation followed by the second.

We can reduce this combined signature as follows. First note that the argu-
ment left on the top of the stack by the first operation is of type ¢, and that this
is the argument required from the top of the stack by the second operation. The
types match and we can cancel them:

ret ret

(ab—>c)(dc—>aa):(abi)(diaa)

We now have a form in which the first signature does not supply any argu-
ments to the second, so the argument of type d required by the second operation
must be present on the stack before the first operation is executed. Therefore we
can write

ret

(abi)(diaa):(dabﬁaa)

We can check these operations by means of a stack trace, which starts with
arguments of type d a and b on the stack and terminates with arguments of type

aa.
Operation Signature Stack

dab
ret
ab — ¢ d c pop types a, b push type ¢
ret
de — aa aa

The initial formulation of a stack based type signature algebra for Forth was

Type Inference in Stack Based Languages 3

presented by Jaanus Poial at Euro Forml 90, the annual European conference
of Forth users [P6i90a]. His algebraic theory draws on work by Nivat & Perrot
[NP70]. The current paper adds rules for type variables, and shows how these
allow the specification of type signatures for low level type free operations. We
also describe the specification of multi-type operations and show how these al-
low the formulation of type signature inference rules for Forth program control
structures (this latter topic also having been formulated, though in a different

way, by J. Péial [P6i90b] [P6i91]).

2. Types and Signatures

If a 1s a type pa is also a type, and represents a pointer to an item of type a.
Application of p is right associative.

ret
In addition to signatures of the form s — {, there is a distinguished signature,
denoted by ¢, which represents a type clash. For example if «a, b, ¢, d are types
with b # ¢, then

(a = b)e = d)=¢

since the first signature supplies an argument of type b and the second requires
an argument of type c.

We use 7 to represent the set of all types and & to represent the set of all
signatures. The relationship between &, 7 and the atomic types from which they
are constructed may be expressed in the style of Z’s free type notation as

T == Atom << ident >>| p << T >>

Su=¢]|- Z << fseq T x fseq7 >>

The syntax for type expressions used in this paper, however, is based partly on

ret

the notation used by Forth programmers, so that we write, for example a — b ¢,
or when using just the ascii character set a -- b ¢ rather than (< ¢ >, <
b,c>).

3. Words and Signatures

A represents the set of words in the Forth language.
sig : fseq A - S

is a partial function mapping a sequence of Forth words to the signature of the
operation they define.

We write a sequence of Forth words as words separated by spaces, for example
we write DUP NEGATE MAX rather than < DUP,NEGATE, MAX > .

Given p, ¢ : A, we write sig(p) to denote sig applied to the sequence contain-
ing just the word p. We use sig(p) * sig(q) or just sig(p)sig(q) to represent the
combined type signatures.

We assume that sig is a homomorphism, so that

sig(p q) = sig(p)sig(q)

4 Bill Stoddart and Peter Knaggs
4. The Sequential Composition of Simple Type Signatures

We use finite sequences of types to model the types of data items held on a stack.
The last element in the sequence corresponds to the top of the stack.

Given s1, 82, t,1t2 :fseq7 and z,y : 7 we present a set of rules for reducing
the sequential composition of two type signatures to a single type signature.

1. #52:0:>(51 i 52)(t1 i tg):tlf\sl i 19

ret ret ret
Example sig(p)sig(¢)=(a b —)¢ — d)y=cab — d
Here p takes arguments of types a and b from the stack and returns no
arguments. The argument of type ¢ required by ¢ must be on the stack
before p is executed.
ret ret ret
2. #tl =0= (51 — 52)(t1 — tz) =85 — 85 1y

ret ret ret

Example sig(p)sig(¢) =(a — b)(— ¢)=(a — b ¢)
3. #y= (s = s2) Ty =) =¢

Example sig(p)sig(q) = (a 2 b)(b ¢ = d)=2¢

Here p leaves an item of type b on the top of the stack and ¢ requires an item
of type ¢ to be on the top of the stack. This causes a type clash. We take a
simple view of types in which a clash occurs unless the types match exactly.
Thus for the moment we do not permit sub types, but we will see how these
can be handled later.

4. (51 i SQAI)(tlﬁI i tz): (51 i 52)(t1 i tz)

Example sig(p)sig(q) = (a = b)(a b = ¢) = (a = Ja — ¢

This rule covers the case in which the top stack item supplied by the first
operation is the same type as the top stack item required by the second. In
this case we can “cancel” the two items.

ret

The composition of a type signature (s = s2)(t = t2) which does not
give a type clash requires n steps where

n =14 min(#s2, #t)

To see this note that rule 4 can be used to reduce the length of s, and # by
one, and whenever one of these sequences becomes empty we can complete the
reduction by one application of rule 1 or rule 2.

5. The algebra of type signature composition

Let (8, *) represent the algebra formed by the set of type signatures together
with the operation of type signature composition.
We introduce the following rule for ¢ and any u : S.

w6 = du=2¢
Thus ¢ 1s the zero element for our algebra.

Note also that (=) is an identity element since (=)u = u by rule 1 and
u(i):ubyruleQ.

In the discussion that follows we assume the following identifiers and predi-
cates.

Type Inference in Stack Based Languages
u,v:8

s1, 89,11, to : fseq T

ret

U =8 — 8
ret
V= tl — tz

Suppose 4 * v # ¢. Then there must be some r : fseq 7 such that by zero or
more applications of rule 4 we obtain
Te ret
uxv = (s =)(r — t2) where t; =r " 59
or
ret ret
uxv=_(5g — r)(— t2) where ss=71r"14

We can therefore express the rules for type signature composition of # and v
as follows:

(Ir:fseqT o
ret
h=r"ssAuxv=r"5 — i
vV
ret

h=r"hbAuxv=s5 — 1)
vV

UV =@

Some results become immediately obvious.
Given r; s, : fseq 7T

ret ret ret

(r —s)(s = t)=r — 1

ret ret

(s — s)"=s5 — s
We can also show associativity, i.e. for any u, v, w : 8
(uv)w = u(vw)

The proof, by considering cases, is obvious but long and is omitted.

6. The Composition of Alternative Type Signatures

We introduce an operation + such that if s; and s» are alternative type signa-
tures, s; + s» is interpreted as the type signature of an operation that can have

type signature s; or type signature ss.
The + operator is commutative and obeys the distributive laws. i.e.

$1+ 52 =852+ 5
51(82 4 s3) = 5182 + 5153

(51 + 82)83 = s153 + s253

6 Bill Stoddart and Peter Knaggs

The zero element from type signature composition functions an an identity
element for +

s+o=s

Also s+ s = s.

Using the algebra (S, {+, *}) we can give results for programs involving con-
ditional statements and iteration, as well as for primitive “type free” operations.
A Forth IF structure has the form

IF « ELSE 3 THEN

The condition test precedes the IF and returns an argument of type flag which
is consumed by the IF. Relating this to English syntax we have something akin
to the form:

Is it raining?

Ifso visit club

else visit park

then eat sandwiches.

We declare
w : fseq A
to represent a Forth program. Let
w = IF « ELSE 3 THEN
Then
sigw = (flag =)(stg o + sig)
One standard Forth loop structure has the form
BEGIN « WHILE /3 REPEAT

BEGIN marks the beginning of the loop. The sequence of Forth words « provides
a flag which is consumed at WHILE. If the flag is true, the word sequence [is
executed and control is passed back to BEGIN. Otherwise execution continues
with the word that follows REPEAT. Let

w = BEGIN « WHILE [REPEAT
Then
. i et , o ret
sigw = (310 o(sig a(flag —)sig B))'sig a(flag —))

Since we have no way of knowing at compile time how many times a loop
might execute, the type signature is an infinite sum. However, if the loop is
“balanced” in terms of stack arguments the signature will simplify to a single
term. The loop 1s balanced if there exists some s : fseq 7 such that

ret

sig a(flag =)sigB=15 — s

The signature of w then reduces to

sigw = (s = s)sig a(flag i)

Type Inference in Stack Based Languages 7
7. Type Variables

We use the identiers w, w’, wy, wy, ... to represent “type variables”. Type vari-
ables are used to represent items of unknown type.

Given w a type variable and u : § a signature which may depend on w and
an identifier z which does not occur in u, we introduce the following rule for
variable introduction or elimination.

u=3 et ufz/u]

Type variables can be used to describe the the signatures of type free oper-
ations. For example the Forth word SWAP exchanges the top two items on the
stack regardless of their type. We write its signature as:

ret

5tg SWAP = wy wy — wy wq

This is equivalent to:

. ret
sigSWAP =) ZyeT(z y — y)

We need rules for the reduction of expressions containing type variables.
These should allow us to deduce, for example, that:

ret ret ret
(w1 Wwo — Wy wl)(wl Wwo — Wy wl) = (w1 we — Uy UJ2)

Type composition rules for signatures containing variable types are derived
from the rules for fixed types and the rule for variable introduction and elimina-
tion, plus a rule to avoid variable name clashes.

Variable names clashes can occur where type signature reduction causes two
variable scopes to be merged. For example consider:

ret ret

(wl Wy — W3 wl)(wl Wy — W3 wl)
here the variables wy in the first signature will in general not represent the same
type as wy in the second signature (in fact it will represent the same type as w-
represents in the second signature). Thus before performing any type reduction
steps we must rename variables as necessary to ensure that no names clash
occurs.

We can now introduce the necesary theorems for reducing expressions that
contain type variables.

Theorem 1. Given s, u, v : fseq7 where s, 4 and v may be dependant on type
variables:

ret ret ret
(s =) u —v)=u"s — v
Proof. Let wy ... w, be the only type variables that occur in s, u or v, and let
r1...2; be identifier names that do not occur in s, # or v. Then

ret ret

(s =)(u = o) =30, (s =) (u = o) fwr ..o fw]

ret

=2 (0T s = V)[w/wn . fw]

8 Bill Stoddart and Peter Knaggs
Theorem 2. Given s,t,v : fseq7 where s,{ and v may be dependant on type
variables:
ret ret ret
(s =) —v)=s =t
Proof. Similar to theorem 1 [
We now give the theorems needed to match and cancel individual items.

Theorem 3. Given s,1,u,v : fseq 7 and wy, ws type variables and m,n : N |
n<m

(s = 7 pmw)(u ™ plwy = v)=(s —)((u — v)[p" "wy/ws))

Proof.

LHS =Y er Syer(s — 17 pmw)[z/wi](u ™ phws — v)[y/ws)

Non zero terms occur only where p™z = p"y i.e. where y = p”~"z. Hence
LHS
ret

= Yeer(sle/w] = tle/wi] 7 pme)(ulp™ e fws) © pm e pe S lpm ")

ret

= Y eer(sle/w] = tle/w])(ulp™ s fws] = v[p™ "/ wn))

ret ret

= (s — t)(u[p™ "wr/wa] — v[p™ ™ "wy [wa])

ret ret

= (s = O((w — v)[p™ "un/ws))

The following may be similarly proved.

Theorem 4. Given s,1,u,v : fseq 7 and wy, ws type variables and m,n : N |
n>m

(s 2 07 pmu)(u ™ prwr = 0) = ((s = " Mws/wi])(u = v)

Theorem 5. Given s, ¢, u,v:fseq7 and a : T
w a type variable and m,n : N

(s = 17 pra)(u ™ prw = v) =
if m < n then ¢
else (s = 1)((u = v)[p™ "a/w])

Theorem 6. Given s, ¢, u,v :fseq7 and a : 7
w a type variable and m, n : N

(s = t7 pmu)(u ™ pra = v) =
if m > n then ¢
ret

else ((s = 1)[p" ™a/w))(u = v)

We can illustrate an application of these theorems by reducing the type sig-
nature of SWAP SWAP

ret ret

(U)l Wy — Wy wl)(wl Wy — Wy U)l)

Type Inference in Stack Based Languages 9

ret 1 ret !

= (w wy — wy wy)(wy, wy — wy w) [renaming]
= (w wq = ws)(w, = wy w)) [by theorem 3]
= (w wq =) = wy wa) [by theorem 3]
= (w1 wo = wy wa) [by theorem 1]

A typical use of theorems 5 and 6 is in deriving the type signature of programs
containing type free memory access operations. Forth can access its memory
space using the type free words @ and !. The signatures of these words are

ret

sig@ = (pw — w)

ret

sig! = (w pw —)

The type variables in these signatures are typically instantiated by composing
the signatures with others that provide additional type information. For example:

(ab = pe)sig@=a b = [by theorem 5 and rule 1 or 2]
sig@(a b = ¢)=a pb = [by theorem 6 and rule 1]
(= pa)sig! = (=) [by theorem 5, rule 4, and rule 1 or 2]

8. Subtypes

So far we have taken a simple view in which types match exactly. An alternative
is to consider atomic types as a partially ordered set, with the ordering indicating
a sub-type relation.

For example suppose a; and as are atomic types with

a; < ap

This would indicate that a; is a subtype of ay. Values satisfying a; would also
satisfy as.

Pointers to atomic types derive an ordering from the ordering of the atomic
types. Thus for any »n and any atomic types ag, as

a1 < ay = ptap < plas

To deal with subtypes we need to reformulate rules 3 and 4 for type signature
composition as follows.

ret ret
3a. “z<y)=>(s1 — 27)(h Ty — t)=¢

ret ret ret ret
4a. < y= (51 — 557 I)(tl - Yy — tz) = (51 — 52)(t1 — tz)

9. Type Correct Programs

One possible way to define the type correctness of a program w with respect to
a specified type signature u is to say that w is type correct with respect to u if
Stgw = u.

10 Bill Stoddart and Peter Knaggs

However, this does not take into account the possibility of using u to help
interpret the type of w.

For example consider the Forth word AND which removes two items from the
stack, performs a bitwise logical AND, and pushes the result back onto the stack.
Forth represents the values true and false with binary values 0 and -1 (noting
that in two’s complement form a -1 is represented by a binary number with all
bits set to zero). So the machine primitive corresponding to AND will perform
boolean operations on flags as well as operations on bitwise logical entities. We
write its type as

sigAND = (flag flag = flag) + (logical logical = logical)

We would like a definition of type correctness which allows AND to be type correct

ret
with respect, let us say, to the specification flag flag — flag.

We define functions to extract the inputs and outputs of a type signature.

inputs(s = t)y=s

outputs(s = t)y=1

And we say w is type correct with respect to a type specification u iff

ret

ret ret
(— inputs u) sigw(outputsu —)= (—)
ret
With this definition AND is type correct with respect to flag flag — flag.

The definition also helps us to handle subtypes. For example suppose we have

ay, az, bla b2 2T

sigw = (a1 = ba) + (a2 = b1)

It follows obviously that w is type correct with respect to u.

References

[ANS91] ANS ACS X8/X3J14 Programming Languages: Forth, Draft Standard, 15¢ Revi-
sion, American National Standards Institute, 1991.

[Bro87] Brodie, Leo: Starting Forth, 2% Edition, Prentice Hall International, 1987.

[NP70] Nivat, M. and Perrot, J. F.: Une generalisation du monoid bicyclique, C.R. Acad
Sci., Paris, 271A, 1970, pp. 824-827.

[P5190a] Pdial, Jaanus: The Algebraic Specification of Stack Effects for Forth Programs,
Proc. EuroForml90 Conf., Southampton, UK, October, 1990.

[P5i90b] Podial, Jaanus: Letter to the authors, 1990.

Type Inference in Stack Based Languages 11

[P5i91] Poéial, Jaanus: Multiple Stack Effects of Forth Programs, Proc. FuroForml9l
Conf., Marianbad, Czechoslovakia, October, 1991.

[Wic88] Wickes, W. C.: RPL: A Mathematical Control Language, Proc. 1988 Rochester
Forth Conf., Rochester, NY, USA, 1988.

