50

Proceedings of the 1991 Rochester Forth Conference

Formal Forth

Peter Knaggs & Bill Stoddart
School of Computing and Mathematics,
Teesside Polytechnic,
Middlesbrough,

Cleveland.

England.

Abstract

Formal notations (such as Z (Zed), and VDM) provide ways of
specifying problems, in a clear and precise notatien. = As these
notations are mathematically based we can mathematically prove
properties of a given specification.

Here we present a system that will aid in ascertaining weather a
program meets it's specification. By providing a formal bases for the
Forth language we can formally discover the coherencies between the
specification and it's implementation, thus we have the ability to
prove that the program meets it's specification.

Introduction

Formal notations (such as Z (Zed) [SpiB9], and VDM [Jon86])
provide a way of specifying a problem in a precise mathematical
notation. The specification is an abstract mathematical model of the
problem, describing what the system has to do, rather than how it is
to be done. The notations use set theory, and first order predicate
logic to build such models.

There are several reasons for using Formal notations.

Understanding

A formal specification can be passed from one person to another
without the possibility of misunderstanding. Due to the ambiguity of
natural language we can never be certain if another person fully
understands our meaning from a statement. When using Formal
notations we can be sure that our exact meaning is presented, as we
are using a precise mathematical language [McM89] [Spi89].

Manageability

It has been found that when specifying large systems the formal
specification is a great deal smaller than the natural language
specification. Additionally the writing of the formal specification can
bring out some of the more complex problems that would have
remained hidden in the namral language specification [Nas89]
[Phi89] [Hay87].

Reasoning

As the specification has been written using a formal notation that
is firmly grounded: in mathematics, we can mathematically reason
about the specification. Indeed it is necessary to prove that the
specification is complete, and is not contradictory. We are thus able
to show that a specification meets its requirements [Dil90] [Jon86].

Requirement

There are several companies that now insist on the use of formal
methods on safety critical systems. The British Ministry of Defence
require formal methods to be used on high level safety critical
systems. The Lloyds insurance house now insist on a formal proof of
all new safety critical systems before they will issue an insurance.

peter.knaggs
Sticky Note
Marked set by peter.knaggs

peter.knaggs
Rectangle

peter.knaggs
Rectangle

peter.knaggs
Sticky Note
Accepted set by peter.knaggs

peter.knaggs
Sticky Note
Accepted set by peter.knaggs

Automated Instruments

51

Why Forth

The conventional computer science approach to programming
languages starts by separating syntax from semantics. The syntax
deals with allowable statements or sentence formation and has been
investigated using techniques that apply equally well to simplified
forms of natural language. These techniques result in a classification
of languages into categories such as phrase structured, context
sensitive, and context free. A powerful body of theory (and
application) has built up around the syntax of a language.

The semantics of a language deals with the meaning of program
text. The interpretation that is placed on a syntactically correct
phrase in a given language.

Most language definitions have a formal description of the
grammar that describes syntactically correct statements for the given
language. However, the syntax of a Forth system is semantically
defined. You could say that Forth is not a computer language, rather
a [Equation: #s[dictionary of words]] . Each word has a [Equation:
#s[definition]] which describes the operation it performs in terms of
existing definitions or in terms of the native code of the machine on
which the system is implemented.

The set of words thus defined performs all operation executed by
the system, including the scanning of Forth text to be compiled or
interpreted. A word may be defined to ignore or amend following
words in the input stream. It is these abilities that makes it difficult
to apply classical syntax theory to Forth.

The theories of programming language semantics, are fully
applicable to Forth and there is reason to suppose that the semantic
description of Forth will be simpler and more powerful than that of
conventional languages.

Formal Notations

In order to present our system concisely we must use the
language of Formal notations. In this section we give a brief
introduction to this meta language.

Sets

A set is a collection of elements. We can specify the elements of
a set by writing them between braces. For example:

X=1{1,2,3}

The order in which elements of a set are listed does not matter
and nor do duplicated entries. Thus:

{1,2,3}={2,3,1}={1,2,1,3}

We use the notation #X to denote the number of elements in the
set X. Thus for the above examples #X = 3.

Given a set X which contains an element x , we use x:X to denote
that x belongs to the set X. This can be though of as saying that the
variable x is of the type X. We use the notation x © X to signify that
the x is a member of the set X. Hence if we define the set X as before
wecansaythat 1 ©X,2© X and 3 © X.

We use two simple set operations, union (®), and intersection (®
). The union of two sets is the set that contains all elements from
those sets:

{1,2,4}®{1,3} = (1,2, 3,4}

The intersection of two sets is the set of elements that are in both
sets. Thus:

{1,2,4)®(1, 3} = {1}

There is a special set that contains no elements. This is referred
to as the empty set and is written:

{}
Ordered Pairs

In addition to sets we use ordered pairs. Given sets A and B , let
P = (a, b) be an ordered pair such that a:A] and b:B. We use the
notation p(i) to select the ith element of the pair p. Thus:

p()=aandp(2)=b
We use A @ B to denote the set of all possible ordered pairs from

the sets A and B. Thus the pair p would be a member of A @ B and
we can write: p: A @ B

Relations

Let P be a set of ordered pairs (p : A @ B). We say P] is a
relation between A and B. We call A the source of the relation and B
the target. .

In the examples that follow NAMES and ADDR will be used to
represent the set of valid Forth names, and the set of address.

An example of a relation is the set of names and address pairs of
words in a Forth dictionary. For a particular Forth system part of this
relation might take the form:

R = {("@".204), ("!",226),...,("TF",6045),...,("IF",20464),...}

The source of this relation is NAMES (the set of names), and its
target is ADDR (the set of addresses).

Given a relation we say that it's domain is the set of all the
elements from the source set that form part of the relation. The range
of a relation is the set of elements from the target set that are used in
the relation.

For any relation R we denote its domain by dom R, and its range
by ran R.

Functions
Partial Functions

A partial function is a relation which has at most one element of
the range associated with each element of its domain. Note that not
every member of the source need be in the domain. An example of a
partial function would be the set of name address pairs which
associates with each name the address that would be returned by a
dictionary search on the name. If we call this function findit we use
the following notation to indicate that findit is a partial function from
NAMES to ADDR.

findit : NAMES +> ADDR
We call this the "signature” of the function. The notation
NAMES +> ADDR

is defined to mean the set of all possible partial functions from
NAMES to ADDR.

Total Functions

A total function is a partial function for which every member of
the source is associated with a member of the range. The function
#f[findit]] is not total because there are some members of NAMES

52

Proceedings of the 1991 Rochester Forth Conference

which are not associated with any address. An example of a total
function would be a memory function, which associated each memory
address with its contents. We write the signature of this function as:

mem : ADDR — BYTE

Application of Functions to arguments
The function f applied to argument a is written as f a.

For f a to be meaningful, a must be a member of dom f. fa is the
corresponding member of ranf. We sometimes enclose the argument
a] within brackets, thus written f{(a).

We must use brackets where the argument is an ordered pair.
For example f (a, b) denotes the function f applied to (a, b).

If f and g are both functions, g (f (@)) can be written as g (f a), or
as g f a. That is to say function are applied from right to left.

Sequences
A finite sequence of size n] is a function whose domain is the set:
{1,2,..,n}
For example, consider the set:
§={(L.a), 2.b), (3,0), (4.b)}
for this set we have:
dom S= {1, 2, 3,4}
ranS= {a,b,c, d)

We introduce a special notation for writing sequences in which
the position of each element denotes the element of the domain being
mapped. With this notation we write:

S=<a,b,c,b>

A sequence is also a function. If S] is a sequence of elements
from the set A we could write its signature as:

§:{1,2,...#5} - A
We introduce the notation § : seqgA as a more readable way of
writing this signature.

It is possible to concatenate one sequence onto the end of another.
Let us take the sequence A = <1, 2, 3> and B = <7, 8, 9> we can
concatenate the two sequences together to form a third. The new
sequence will have all the elements of the first sequence followed by
all the elements of the second.

C=ANB=<1,2,3,7,8,9>

Sequence concatenation will only work on two sequences with
the same signature. The resulting signature for C is the same as
those for A and B.

There are four functions that allow us to manipulate the content
of a finite sequence. Let us assume the sequence S =<1, 2, 3, 4>.

head §=1
tale §= <2, 3,4>
front S =<1, 2, 3>

last S=4

The Forth Toolbox

In order to talk formally about a program, we must have a
formally described programming language / environment. Forth
provides us with a simple language come programming envirenment
come debugger. Due to the simple nature of Forth this can be
formalised much more readily than most other languages [Sto88].
The Formal description of the Forth programming environment will
provide us with an additional Toolbox to use when formally
describing an application program.

The Basic Model

Let us assume that we have a set of all of the known memory
locations in a system, and that we have a set of all the possible
(allowable) names for a Forth system:

[ADDRS, NAMES]

It is possible to say that the Forth dictionary is a relation between
names, and addresses. However, defining a simple relation does not
capture the ordered (historical) nature of the dictionary, so we make
this a sequential relationship:

dict : seq NAMES x ADDRS

An example entry of this type wold be (6,("@",204)) where the
word @ is the 6th entry in the dictionary, and has an address of 204.
Quite how this is implementated is up to the individual. In 2 token
based system, the 6 could be though of as being the token for the
word @, while a threaded code (or threaded subroutine) system may
not store the 6 at all, but use the associated address.

"

However, for our purposes we will use the netion of a token:
token : N
Word Definitions

We now have the sequence dict] that tells us what words are in
the dictionary, and where they can be found. However, we have yet
to record the definition of a given word. To do this we introduce a
function that relates known words to there definitions:

body : token — seq NAME

where token] is the index number of the word in the dictionary
and seq NAME is the sequence of words that make up the definition.
Hence a word such as NIP may have a dictionary entry of:

{33,("NIP", 378)}
and a definition of:
{33 — <SWAP, DROP>)

This allows us to reason about words that are defined with other
words.

Immediate Words

We must be able to discover if a word is immediate or not.
Hence we introduce a function taking the token] of a word and
returning a true} if the word is immediate, or a false] if it is not:

IMMEDIATE : token — {true, false}
Storages Units

Forth does not use types in the conventional manner. Instead of
types it uses classes of storage unit. There are three classes of

Automated Instruments

53

storage unit in the basic Forth system. Such as: Character, Cell, and
Double Cell.

Each class of storage unit is able to store any number of types
that the application program requires. The only limitation being a
hardware restriction. The application program may also add to the
list of possible types that a given storage class can hold.

Words are defined with reference to the unit class rather than the
exact type required. If we were to enforce the use of types in our
model we would not be modeling a valid Forth system. Hence our
system uses the notion of classes of storage unit.

We must introduce the classes of storage unit as given sets of
types:
[CHAR, CELL, DOUBLF]
The Parameter stack

We must provide a mechanism for the parameter (and return)
stack. This we do by defining a global variable of a sequence of
stack cells:

pstack, rstack : seq cell

Thus we could define the Forth word DEPTH as pstack' =
<#pstack>Mpstack. Ie., we push onto the stack (add to the start of the
sequence) the size of the stack (sequence) as it was on entry to the
statement.

A possible definition for DROP would be pstack’ = tail pstack.
Ie., the stack (sequence) now holds all that was previously on the
stack (in the sequence) except for the top most (first) element.

Code Definitions

There are many words that are coded in the native machine
language of the host computer. The SWAP and DROP are two such
words.

We introduce a set of code level words. As these words are
defined in the native machine

language we can not give their definitions. However, we can give
a formal description of the function that they perform.

Assuming that the words SWAP, and DROP have the following
dictionary entries: { {3,("SWAP", 30)}.(4,("DROP", 36)} }

then we could represent there actions as:
{{3 > [pstack’ = <pstack 2>N<pstack 1>Mail tail pstack]}
{4 — [pstack’ = tail pstack]}}

So we now have a function that relates known "code level” words
to there required action:

code : token — axiom

Thus giving us an additional set of axioms to work with when
reasoning about the implementation.

No word may be in both the body and the code relations:
dom body N dom code = (}

Wordlists
We define a set of wordlists:
WORDLIST : {wly, wly,..., Wi}

The dictionary is composed of several wordlists such that the
wordlists include all the entires in the dictionary:

dict = wly Uwiy L...U Wil

Yet no single entry occurs in more than one wordlist, ie., for any
two wordlists wi;, and wlj:

At any point in time the dictionary has a search order associated
with it. The search order is simply a sequence of wordlists that are to
be searched:

search_order : seq WORDLIST
There is also the compilation wordlist:
compilation_w!l : WORDLIST

Defining words

When 2 word is created it is appended onto the end of the current
compilation wordlist.

Let us take the example of the word +!, we could define this word
as:

: +! (n addr) DUP @ ROT + SWAP ! ;
This would add the name +! to the currently defined compilation
wordlist:
compilation_wl’ = compilation_wi U {(244, ("+!", 8270))}

However, this has only added the name of the word to the system.
We must now add the word's definition to the system. This we do by
adding an entry to the body relation, thus:

body' = body U{244 — <DUP, @, ROT, +, SWAP, 1>}

We must now extend the IMMEDIATE function so as to returm a
false value for this word (token):

IMMEDIATE’ = IMMEDIATE v {244 — false)

The definition for the word IF could be:

: IF COMPILE ?BRANCH >MARK ; IMMEDIATE
This would add the name IF to the current compilation wordlist:

compilation_wl’ = compilation_wl L{(300, ("IF", 10030))]
The definition of the word is added to the #{[body]] relation:
body' = body U{300 — <COMPILE, "BRANCH, >MARK>}

‘While the IMMEDIATE places a true mapping into the function
IMMEDIATE: ;

IMMEDIATE’ = IMMEDIATE U {300 — true)

A CODE definition is added to the set of axiomatic definitions.
Hence the word DROP would be entered as:

compilation_wl’ = compilation_wl U {(4, ("DROP", 36))}
code’ = code \J{4 — pstack’ = tail pstack})
IMMEDATE’ = IMMEDATE u{4 - false}

54

Proceedings of the 1991 Rochester Forth Conference

Dictionary Searching

In order to model the dictionary search we define a Boolean
function that returns a true] if a given word is in a given wordlist,
otherwise it returns a false:

inwordlisty (n, wl) =n € dom ran wi

That is, a frue result is obtained if 7 belongs to the set dom ran
wi. Let uvs clarify this by means of an example:

Assume wi= {(343,("MENU",40761)), (347,("HELP" 41633))}
then ran wi= {("MENU",40761), ("HELP",41633))
dom ran wi = {"MENU", "HELP"}

We can now define a function to find a given name within a given
wordlist:

find; (n, wl) =IF n = ((last wil) (2)) (1)
THEN ((last w)) (2)) (2)
ELSE find; (n.front wy)

This recursive definition says that if the name being searched for
(n)in wordlist (wl) is the last name in the wordlist (((last wi) (2))
(1)), then return is associated address (((last wi) (2)) (2)).
Otherwise repeat the operation on a new wordlist, being the front of
the current wordlist.

Note that the definition for find, does not indicate what will
happen if the name is not in the wordlist.

Let us show how the two accessing functions work in this
definition. Let us assume that the last entry of the wordlist is (200,
("BLOCK", 40562)). Then:

((200, ("BLOCK" 40562))(2))(1) = ("BLOCK™"40562)(1)
="BLOCK"]
= ("BLOCK",40562)(2)
=40562

(200, ("BLOCK",40562))(2))(2)

We now introduce a Boolean variable to indicate if the word has
been found or not:

wordfound : {true, false)

We can now complete our model of the dictionary search
operation by defining a function that takes a name and a search order
as arguments, and retums an address:

find(n, s)=IFs # {)
THEN IF inwordlist|(n, head s)
ELSE wordfound’ = true
find;(n, head 5)
ELSE find(n, tail s)
ELSE wordfound’ = flase

This function works by checking that the required word (7) can
be found in the first wordlist of the search order (s). If it can, then
we use the function find, to find it and set the variable wordfound’ to
true, otherwise we start again using the first wordlist from the
remaining wordlists in the search order. Note that if the search
order becomes empty, then we have searched through all of the given

wordlists without finding the word. Hence we simply set the variable
wordfound’ to false. Thus we can use the value of wordfound to
indicate that the word has been found in one of the given wordlists.

Type clashes

We have managed to formally describe the Forth environment,
including the typeless stack. However the class of storage unit notion
introduces an additional problem. Let us look the following sequence
of Forth code:

X @ EXECUTE

Where the variable X is holding an integer. The word @ will
fetch a value of storage unit cell and place it on the stack. The word
EXECUTE will then take the cell storage unit class and execute the
related definition.

There are two types used in this example, infeger, and execution
token. Both types belong to the storage unit class cell. In this
example we have the word EXECUTE expecting 2 value of type
execution token when there is a value of type infeger on the stack.
As these are both of storage unit class cell the possible error goes
undetected. The type clash would be uncovered when proving that
the program meets the specification, provided that a rigourous
enough proof is conducted.

It is possible to add a "Stack Type Algebra" to the system that
would catch such errors [P6i90] [Sto91].

Conclusion

We have seen how parts of the Forth environment can be
specified using Formal Notations. Thus providing us with a
programming environment, and an extendible toolset to develop code
that can be formally reasoned about. It should be possible to prove
that an application program meets with its (formal) specification, and
hence with its requirements (this is not to say that the program is
optimally coded). Thus we can say that the program is correct with
respect to its specification.

Bibliography

{Dil90] Antoni Diller, “Z: An introduction to Formal Methods", John
Wiley & Sen, 1990.

[Hay87] 1. Hayes (Ed.), "Specification Case Studies", Prentice Hall,
1987.

[Jon86] C.B. Jones, "Systematic Software Development Using
VDM", Prentice Hall, 1986.

[McM89] M.A. McMorran, J.E. Nicholls, "Z User Manual", Version
1.0, IBM Technical Report TR12.274, July 1989,

[Nas89] Trevor Nash, "Using Z to describe Really large system”,
Proc. 1989 Z Users Meeting, Oxford University.

[Phi®9] M. Phillips, "Results of using Z in CICS", Proc. 1989 Z
Users Meeting, Oxferd University.

{P6i90] Jaanus Péial, "The Algebraic Specification of Stack Effects
for Forth Programs", Proc. 1990 EuroFORML Conference.

[Spi89] .M. Spivy, "The Z Notation: A Reference Manual", Prentice
Hall, 1989.

[Sto88] Bill Stoddart, “Specification & Optimisation”, Proc. 1988
EuroFORML Conference.

Automated Instruments

55

[St091] Bill Stoddart, Peter Knaggs, "A Type signature algebra for
stack based languages”, submitted to "Formal Aspects of
Computing”, BSC & Springer International.

peter.knaggs
Rectangle

peter.knaggs
Sticky Note
Accepted set by peter.knaggs

