Automated Instruments

55

The Cell Type

Peter J Knaggs and Bill Stoddart
Teesside Polytechnic
Middlesbrough, Cleveland, England.

It is generally considered that the lack of typing in Forth is
useful. This can be seen by the definition of the stack to hold values
of type CELL. The definition of the type CELL is sufficiently vague
to allow any data type to be allowed.

However this can also be misleading and confusing. Here we
present a theory that allows us to not only type the arguments to a
function, but additionally to check that the arguments are correct for
any given function.

Introduction

The ANS ASC X3/X3J14 Technical Committee define cell as:
The primary unit of information in the architecture of a Forth system.
Data stack elements, return stack elements, addresses, and single-cell
numbers are one cell wide. Cell size is implementation-defined,
specified in integer address units and the corresponding number of
bits. The size of a cell is an integral multiple of the size of a
character. [Bas91]

It is allowable to store an execution token in a single-cell
variable. Hence it is possible to fetch the contents of a single-cell
variable and execute the resulting token. However, if the single-cell
variable were to be holding an integer value then the system would
treat this value as if it where an execution token. This is obviously a

type clash.
Stack Types

We propose a system that can be used to check the type
requirements of a sequence of words at compile time. This will also
have the advantage of not restricting the programmer from changing
the type of a stack argument mid word.

This system can be used to check that any given program meats
with its stack requirements. This is not the same as saying that the
program is complete or correct in operation. We only say that the
code is type correct [P6i90] [Sto91].

Notation

We give each word a type signature, we use the notation (s; ---
s9) to indicate a words type signature. It would be possible to define
a word with a signature of (g, b, ¢ --- @, a) to indicate that the word
will take three arguments of type a , b, and c , returning two values
of type a on the stack. Using our system it is be possible to prove
that the sequence of words that makes up the new word will actually
perform this type transformation.

Rules

In order that we can discover whether a sequence of type
signature will perform the type transformation that we require we use
the following rules for manipulating the signatures.

Composition Rules

The Composition Rules are used to rewrite two signatures into
one new signature. We will use the notation (57 —s9) (t] - tp)
to indicate two adjacent type signatures.

peter.knaggs
Sticky Note
Unmarked set by peter.knaggs

peter.knaggs
Rectangle

peter.knaggs
Sticky Note
Accepted set by peter.knaggs

56

Proceedings of the 1991 Rochester Forth Conference

Rule 1: If sy is null (there are no types indicated) then we can
add the requirements of the second word to that of the first,
generating one signature.

(s1--53)(tl-—1ty), #s59=0

(t1,81—1)

Rule 2: If t; is null (the second word takes no arguments) then
we can append the results of the second word to those of the first
word.

(51 —59) (1] —1p),#;=0

(51591)

Rule 3: ¥f the last element of sy does not match the last element
of t; then we have a type clash.

(s1---59) (1] ~19), last sy < lastty

0

Reduction Rules
Reduction rules are used to reduce the type signatures until a
:‘Composition rule can be used on the sequence.

Rule 4: If the last element of s is the same as the last element of
t1 then the types do not clash, and the argument passing is internal to
the sequence of operations. Hence we can rewrite the sequence
removing this element.

(s1--s9)(ty —1y), lastsy =lastty

(s - front 59) (front t; - 15)

The remaining rules are used when handling wildcard types. A
wildeard type can match any known type. We indicate a known type
as being a member of the set x, and a wildcard type as being a
member of the set W.

Rule 5: I the last clement of s5 is of a known type and the last
clement of t; is a wildcard we remove the matching items, and
rename any additional occurrences of the wildcard in the second
signature ‘with the known type from the first signature.

(s1—s3)(t] -1y),lastsy £k, lastt) €W

(sq - frontsy) ((frentty -ty) [last sy /last t;])

Rule 6: If the last element of s is a wildcard and the last element
of t; is of a known type we can remove the matching types and
replace any occurrences of the wildcards in the first signature by the
known type.

(51 -89) (ty 15), lastsy e W, lastt) e K

((sq ——front sy) [last t; /last sy])(frontt; ---15)

Rule 7: If there are wildcard types in s, and similarly named
wildcard types in t, we rename the wildcards in the second signature
by decorating them with a prime.

(51 — s9)(t] - tp), ran(sy U sy) inter ran(t; U ty) inter W <>{}

the wildcard does not already exist in the second signature (there is
not a name clash).

(51 - 5)(t] - t3),last s)EW last t1£W last s9 note ran(ty j t3)

(51 —5) (g —p)[e/e])

Rule 8: If the last element of s; is a wildcard and the last element
of ty is a wildcard, we can remove the matching wildcards, and
rename all remaining occurrences of the wildcard in the second
signature with the wildcard from the first signature, providing that

(51 -—-front sy) ((frontty —ty) [last sy /last ty])

Simple Example

Let us assume the following signatures for Forth words:
DROP (®o---)
OVER (@),0) — ©},00,0)
SWAP (07,0,03 — 0,03,0])

Prove that the sequence OVER ROT DROP is equivalent to the
word SWAP:
Assume: (01,0 ——®7,07,0] }(©,0,03——0), 03,01 }(0—)
Rule 7: (001,0)—01,09,01 (' ,0,03—0'9,00'3,0')((>—)
Rule 8: (m1,0)—,07)(00'],07—0'9,04,6')(0—)
Rule 8: (@7,0)—1 }(00'1—09,01,0' (&—)
Rule 8: ((ol,mz—)(——mz,ml,ml)(m—')
Rule 2: (0y,0)—,07,0))(0—)
Rule 8: (@7,0)—0),®1)(—)
Rule 2: (007,0)—5,01)
Multiple Signatures

There are two functions associated with the Forth word AND.
The first is that of a logical (Boolean) AND, while the second is that
of a binary (bitwise) AND. The signature for a Boolean AND is (flag,
flag - flag), while the signature for a bitwise AND is (logical,
logical - logical). So the signature for the word AND is:

sig(AND) = (flag, flag --- flag) + (logical, logical --- logical)

The correct signature will be used in composition due to the
naming of a known type. Let us assume that the Forth word IF has
the signature (flag ---). When we come to compese the sequence
AND IF we will know (from the signature of IF) that the Boolean
AND signature is required.

Notice that we have also introduced the notation sig (X), to
indicate all of the possible signature compositions of the phrase X.

Pass by reference

We indicate a painter to a known type by writing *™k. Where the
¥ js used 1o indicate n levels of indirection, and the k is the known
type being referenced.

For simplicity we write *k to indicate #lx Thenotation *Ok is
the same as the basic type k without indirection.

Control Structures

Let us take the Forth statement: IF A ELSE B THEN. We must
compose the signature for both cases of the IF condition. Hence for a
true condition the sequence (flag ---) sig (A) exists, while for a
false condition the sequence (flag -) sig (B) exists. These two
signature can be written as one multiple signature:

Automated Instruments

57

(flag -) (sig (A) +sig (B))

For a more complex control structure, such as BEGIN A
WHILE B REPEAT, we have no way of knowing how many times
the loop will be executed. We must therefore produce a multiple
type signature for all the possible different number of iterations:

2 (sig(A) (tlag) sig(B) sig (A) (flag —)
i=0

Stacrobatics

There are occasions when a programmer will want to convert the
type of a stack item that is not catered for by the default matching

type signatures.

Let us assume that the programmer would like to convert a
single-cell integer into an execution token. He would have to add the
following line to his code:

<< int --- token >>

Where the Forth word << enters into a 'alter type signature' mode.
He then gives a representation of what he expects the current stack
signature to be (int). The word --- is used to move from describing
the current stack, to describing the signature he would like (token).
Finally the word >> replaces the current stack signature with the
required signature. This is similar to C's casting mechanism,

Strong vs Weak Typing

In a strongly typed system every variable will have a known type
associated with it. Hence a single-cell variable that has been defined
to hold an integer could not hold a token, as that would lead to a type
clash. While in a weakly typed system all the variables will be
defined to hold any of the known types.

This can be seen by examining the following code:

X @ EXECUTE
In a strongly typed system this would have a signature of:

(- *int) (*int - int) (token -)

Which shows up the type clash. In order to compile this code the
programmer would have to cast the top element of the stack:

X @ << int --- token >> EXECUTE
While is a weekly typed system it would have a signature of:

(- *k) (*token --- token) (token ---)

As the X returns a referenced to a known type (*k) this will be
matched with the referenced token (*token) type required by @.
Thus this code will be acceptable to a weakly typed system.

Conclusion

The lack of typing in Forth makes it a versatile, if unusual, tool.
However, we have noted that where this ability is abused we can,
unwittingly, write code that may cause the system to perform
different actions to those we expected.

We have seen how a typing system could be added to Forth at
compile time. This system will allow us to reason about the code
that we are writing. It will stop the abuse of the typeless stack,
whilst maintaining the abilities of a typeless stack.

This system would allow us to say that a program is correct in its
handling of the stack. It can not say that the program will perform as
required, but simply that the stack manipulation will not be the cause
of any problem.

Bibliography

[P6i90] Jaanus Poial, "The Algebraic Specification of Stack Effects
for Forth Programs", Proc. 1990 EuroFORML. Conference.

[Sto91] Bill Stoddart, Peter Knaggs, "A Type signature algebra for
stack based languages", Submitted to "Formal Aspects of
Computing", BCS & Springer International.

[Bas91] ANS ASC X3/X3J14 Technical Committee, "X3J14 Basis
Document", revision 15.

